

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

FIVE- YEAR INTEGRATED PROGRAMME M.SC APPLIED CHEMISTRY

SYLLABUS (University Department)

FROM THE ACADEMIC YEAR 2024 – 2025

ABOUT THE DEPARTMENT

The department of chemistry was established in 2002 as post-graduate and research department. The full-fledged department was started during academic year 2010-11. The department is offering the M.Sc., and Ph.D courses. The department consists of 5 faculty members, 1 administrative staff, 32 research scholars and 52 PG students. The faculty members have been working on the modern and thrust areas in chemistry with financial support from various national funding agencies such as DST, DRDO, BRNS, UGC etc., and continued to publish quality research papers in both national and international journals.

VISION AND MISSION

Statement of Vision

Chemistry provides immense scope for study, research and gainful employment in various sectors. The Department of Chemistry of Thiruvalluvar University is determined to educate and graduate rural students. The department is committed to prepare, compete in and contribute to the needs of modern chemical science based industries and academia. To achieve this vision, the department is dedicated to provide a course of study for post-graduate in chemistry which combines curriculum and research oriented project that are high-quality, innovative and intellectually challenging.

Statement of Mission

The mission of the Department of Chemistry of Thiruvalluvar University is to advance the chemical sciences through the education of post-graduate students in rural society by providing them with quality classroom learning and research opportunities. The department is committed to impart a high standard for excellence in all branches of chemistry by innovative and dedicated teaching at post-graduate level to produce students with good knowledge in chemistry.

THIRUVALLUVAR UNIVERSITY

Department of Chemistry

M.Sc., Chemistry (University Department)
UNDER CBCS (With effect from 2024-25)

The course of study and scheme of examinations

- 1. TITLE: M.Sc., Applied Chemistry (5yr Integrated)
- 2. YEAR OF IMPLIMENTATION: July 2024 onwards
- **3. COURSE DETAILS:** (duration of the course: **5** years)

Total No. of Semesters – 10

No. of theory papers per semester - 05/07

Total No. of theory papers - 56 (38 core papers+10 Elective

papers+2 Value added course + 4 Skill based papers + 2 Non Major

elective papers

No. of practical courses per semester – 02/03

Total No. of Practical – 16

Project – 10th semester

Total Marks for M.Sc. Degree

Theory - 4600 marks
Practicals - 1600 marks
Project - 100 marks

Total - 6300marks

4. PREAMBLE OF THE SYLLABUS:

Master of Science (M.Sc.) in Chemistry is a Integrated post graduation course of Thiruvalluvar University. The curriculum is prepared by following the prospectus of various national and international universities. The board of studies of M.Sc., Chemistry is framed the syllabus by covering the broad areas and fundamental aspects in modern chemistry.

The syllabi are all set to meet the standard of CSIR-UGC-NET, GATE and SLET examinations. The credit system to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities. The students pursuing this course would have to develop indepth understanding of various aspects of chemistry. The conceptual understanding, development of experimental skills, designing and implementation of novel synthetic methods, developing the aptitude for academic and professional skills, acquiring basic concepts for structural elucidation with hyphenated techniques, understanding the fundamental biological processes and rationale towards computer. The project introduced the curriculum will motivate the students to pursue the research and find a job in reputed pharmaceutical and other industries including abroad.

THIRUVALLUVAR UNIVERSITY MASTER OF SCIENCE

5yr Integrated M.Sc. APPLIED CHEMISTRY UNDER CBCS With effect from 2024-2025

The Course of Study and the Scheme of Examinations

Template for Curriculum Design for 5 Year Programme in Chemistry Credit Distribution for 5 Year Programme in Chemistry

First Year

Semester-I

Part	List of Courses		Hours
		Credit	per week (L/T/P)
Part-I	Language	3	6
Part-II	English	3	4
Part-III	General Chemistry–I CC1	5	5
	Quantitative Inorganic estimation (titrimetry) and Inorganic Preparations CC2	2	3
	Mathematics (or)Botany /Zoology EC1	4	6
	Skill Enhancement Course SEC-1 (NonMajor Elective)	2	2
Part-IV	Foundation Course FC	2	2
	Ability Enhancement Compulsory Course(AECC) Soft Skill-1	2	2
		23	30

Semester-II

Part		Credit	Hours per week (L/T/P)
Part-I	Language	3	6
Part-II	English	3	4
Part-III	General Chemistry–II CC3	5	5
	Qualitative Organic Analysis and preparation of Organic Compounds CC4	2	3

	Mathematics (or)Botany /Zoology EC 2	4	6
	Skill Enhancement Course SEC-2 (NME)	2	2
Part-IV	Skill Enhancement Course SEC-3 (Discipline Specific)	2	2
	Cosmetics and Personal care Products		
	Ability Enhancement Compulsory Course(AECC) Soft	2	2
	Skill-2		
		23	30

Second Year Semester-III

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language	3	6
Part-II	English	3	4
Part-III	General Chemistry–III CC5	5	5
	Qualitative Inorganic AnalysisCC6	2	4
	Physics EC 3	4	5
Part-IV	Skill Enhancement Course SEC-4: Entrepreneurial skills in Chemistry	1	1
	Skill Enhancement Course SEC-5: (Discipline Specific) Pesticide Chemistry	2	2
	Ability Enhancement Compulsory Course(AECC) Soft Skill-3	2	2
	EVS		1
		22	30

Semester-IV

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-I	Language	3	6
Part-II	English	3	4
Part-III	General Chemistry–IV CC7	4	4
	Physical Chemistry Practical- I CC8	3	3
	Physics EC 4	4	5
Part-IV	Skill Enhancement Course SEC-6: Instrumental methods of Chemical Analysis (Theory)	2	2
	Skill Enhancement Course SEC-7: (Discipline Specific) Forensic Science	2	2

Ability Enhancement Compulsory Course(AECC) Soft Skill-4	2	2
EVS	2	2
	25	30

Third Year Semester V

Part	List of Courses	Credit	Hours per week (L/T/P)
Part-III	Organic Chemistry -I CC9	4	5
	Inorganic Chemistry - I CC10	4	4
	Physical Chemistry -I CC11	4	5
	Biochemistry EC5	3	4
	Industrial Chemistry EC 6	3	4
	Project with viva-voce CC12	4	4
Part IV	Value Education	2	2
	Internship / Industrial Visit / Field Visit(Carried out in II Year Summer vacation) (30 hours)	2	2
		26	30

Semester VI

Part	List of Courses	Credit	Hours per week (L/T/P
Part-III	Organic Chemistry -II CC13	3	5
	Inorganic Chemistry - II CC14	3	4
	Physical Chemistry -II CC15	4	5
	Physical Chemistry Practical II CC16	2	3
	EC7 Fundamentals of Spectroscopy	3	5
	EC 8Nanoscience/Polymer science/ Pharmaceutical Chemistry (Elective based)	3	4
Part IV	Professional Competency Skill	2	4
Part V	Extension Activity	1	-
		21	30

Fourth Year

Semester-VII

			Credit	Hours per
Part	List of Courses			week (L/T/P)
Part A	CC1 – Organic Reaction Mechanism-I		4	5(4L + 1T)
	CC2 – Structure and Bonding in Inorganic Compounds		4	5(4L + 1T)
	CC3 – Organic Chemistry Practical		4	5(4L + 1T)
	Elective I (Generic / Discipline Specific) (One from Group A)		3	5(4L + 1T)
	Pharmaceutical Chemistry/Nanomaterials and Nanotechnology			
	Elective II (Generic / Discipline Specific) (One from Group B)		3	5(4L + 1T)
	Electrochemistry/Molecular Spectroscopy			
Part B	Ability Enhancement Compulsory Course (AECC 1) Soft Skill-1		2	2
	Skill Enhancement Course -SEC 1 (One from Group G)		2	3
	7	Total	22	30

Semester-VIII

		Credit	Hours per
Part	List of Courses		week(L/T/P)
Part A	CC4 – Organic reaction mechanism-II	4	5(4L + 1T)
	CC5 – Physical Chemistry-I	4	5(4L + 1T)
	CC6 – Inorganic Chemistry Practical	4	5(4L + 1T)
	Elective III (Generic / Discipline Specific) (One from Group C)	3	5(4L + 1T)
	Medicinal Chemistry/Green Chemistry		
	Elective-IV (Computer / IT related) (One from Group D)	3	5 (3L+ 2 P)
	Bio Inorganic Chemistry/Material Science		
Part B	Skill Enhancement Course -SEC 2 (One from Group G)	2	3
	Ability Enhancement Compulsory Course (AECC 2) Soft Skill-2	2	2
	Total	22	30

Fifth Year

Semester-IX

Part	List of Courses	Credit	Hours per week(L/T/P)
Part A	CC7 – Organic synthesis and Photochemistry	4	5(4L + 1T)
	CC8 – Coordination Chemistry-I	4	5(4L + 1T)
	CC9 – Physical Chemistry Practical	4	5(4L + 1T)
	Elective V (Generic / Discipline Specific) (One from Group E)	3	5(4L + 1T)
	Pharmacognosy and Phytochemistry		
	Core Industry Module	3	5(4L + 1T)
Part B	Internship / Industrial Activity (Carried out in Summer Vacation at the end of I year – 30 hours)	2	
	Skill Enhancement Course -SEC 3: Professional Communication Skill -Term paper & Seminar presentation	2	3
	Ability Enhancement Compulsory Course (AECC 3) Soft Skill-3	2	2
	Total	24	30

Semester-X

Part	List of Courses	Credit	Hours per week (L/T/P)
Part A	CC10-Coordination Chemistry-II	4	5(4L + 1T)
	CC11- Physical Chemistry-II	4	5(4L + 1T)
	CC12 – Analytical Instrumentation technique Practicals	4	5(4L + 1T)
	Elective VI (Generic / Discipline Specific) (One from Group F) Chemistry of Natural products/Polymer Chemistry	3	5(4L + 1T)
	Core Project with viva voce	3	4
Part B	Professional Competency Skill Enhancement Course Training for Competitive Examinations Chemistry for NET / UGC - CSIR/ SET / TRB Competitive Examinations (2 hours) General Studies for UPSC / TNPSC / Other Competitive Examinations (2 hours) OR Chemistry for Advanced Research Studies (4 hours)	2	4
	Ability Enhancement Compulsory Course (AECC 4) Soft Skill-4	2	2
Part C	Extension Activity	1	
	Total	23	30

TOTAL CREDITS: 231

Credit Distribution for UG Programme in Chemistry

Sem I	Cr	Sem II	C	Sem III	Cr	Sem	Cr			Sem		Sem VII		rSem VIII	C	Sem IX		Sem X	Cr
Sem 1		Sem II		Sem III		IV		Sem v		VI		Sem vm	- 1			Sem IX			e
	e di		e di		e dit		e di		e dit		e di		e dit		e dit		e dit		dit
	t		t		uit		t		uit		t		an		uit		uit		un
1.1. Languag	3	2.1. Languag	3	3.1. Language	3	4.1. Langu	3	5.1 Core	4	6.1 Core	4	7.1 Core I	4	Core IV	4	Core VII	4	Core X	4
e		e		Zungunge		age		Cours		Cours									
		-				8-		e –		e –CC									
								\CC IX		XIII									
1.2	3	2.2	3	3.2	3	4.2	3	5.2	4	6.2	4	Core II	4	Core V	4		4	Core XI	4
English	5	English		English	,	English	1 -	Core	•	Core		Core ii	'	Core v	'	Core VIII	'	0010711	ľ
Liigiisii		Liigiisii		Liigiisii		Liigiisii		Cours		Course						Core viii			
								e –		_									
								CC X		CC									
								0071		XIV									
1.3	4	2.3	4	3.3	4	4.3	4	5.	4	6.3	4	Core III	4		4	Core IX	4	Core XII	4
Core		Core		Core		Core		3.Cor		Core				Core VI					
Cours		Cours		Cours		Cours		e		Cours									
e –CC		e –CC		e –		e –CC		Cour		e –CC									
I		III		CC V		VII		se		XV									
						Core		CC -											
						Indust		XI											
						ry													
						Module													
1.4	4	2.4	4	3.4	4	4.4	4	5.	4	6.4	3	Elective I	3	Elective III	3	Elective / ED V	3	Project with viva	.3
Core		Core		Core		Core		3.Core		Electiv								voce XIII	
Cours		Cours		Cours		Cours		Cours		e									
e –CC		e –CC		e –		e –CC		e –		-VII									
II		IV		CC		VIII		/		Generi									
				VI				Projec		c/									
								twith		Discip									
								viva-		li ne									
								voce		Specif									
								CC -		ic									
								XII											

1.5 Elective I Generic/ Discipline Specific	3	2.5 Elective II Generic / Discipli ne Specifi c	3	3.5 Elective III Generic/ Discipli ne Specific	3	4.5 Electi veIV Gener ic/ Discip line Specif ic	3	5.4 Electi veV Generi c/ Discip li ne Specif ic	3	6.5 Electi ve VIII Generi c/ Discip li ne Specifi c	3	Elective II	3	Elective IV	3	Core Industry Module	3	Elective VI 3
1.6 Skill Enhanc ement Course SEC-1 (NME)	2	2.6 Skill Enhanc ement Course SEC-2 (NME)	2	3.6 Skill Enhanc ement Course SEC-4, (Entrepr eneurial Skill)	1	4.6 Skill Enhan ce ment Cours e SEC-6	2	5.5 Electi veVI Generi c/ Discip li ne Specifi c	3	6.6 Extens ion Activi ty	1	Skill Enhancement Course -SEC 1	2	Skill Enhance ment Course -SEC 2	2	Skill based (Term paper and Seminar)	2	Skill 2 Enhance ment Course -SEC 4
		2.7 Skill Enhanc ement Course –SEC-3	2	3.7 Skill Enhanc ement Course SEC-5	2	4.7 Skill Enhan ce ment Cours e SEC-7	2	5.6 Value Educat ion	2	6.7 Profes si onal Comp ete ncy Skill	2	Ability Enhance ment Course (AECC 1)	2	Ability Enhance ment Course (AECC 2)	2	Ability Enhance ment Course (AECC 3)	2	Ability 2 Enhance ment Course (AECC4)
1.7Abil ity Enhance ment Compul sory Course (AECC) Soft Skill-1	2	2.8 Ability Enhanc ement Compul sory Course (AECC) Soft Skill-2	2	3.7 Ability Enhance m ent Compul sory Course (AECC) Soft Skill-3	2	4.7 7Abili ty Enhan ce ment Comp ulsory Cours e (AEC	2	5.5 Summ er Intern ship /Indus trial Traini ng	2							Internship / Industrial - Vacation Activity	2	Extension 1 Activity

						C) Soft Skil I-4									
1.8 Skill Enhance ment - (Foundati o n Course)	2			3.8 E.V.S	-	4.8 E.V.S	2								
	2 3		2 3		2 2		2 5	2 6	2	22	22		24	2:	3
	Poir	nts		Total Cred			13		-			231			

Consolidated Semester wise and Component wise Credit distribution

Pa rts	S e m I	Se m II	Se m III	Sem IV	Sem V	S e m V I	Sem VII	Sem VIII	Sem IX	Sem X	Total Credit s
Part I	3	3	3	3	-	-	12	12	12	12	60
Part II	3	3	3	3	-	-	6	6	6	6	36
Part III	1 1	11	11	11	22	1 8	4	4	4	4	100
Part IV	6	6	5	8	4	2			2	1	34
Part V	-	-	-	-	-	1					1
Total	2 3	23	22	25	26	2 1	22	22	24	23	231

*Part I. II , and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree

Syllabus for different Courses of 5 year Chemistry

Title of the			G	ENERAL	СН	EMISTRY-I	
Course							
Paper No.	Core I						
Category	Core	Year	I	Credits	5	Course	
		Semester	I	1		Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Higher sec	ondary cher	mistr	y		•	
Objectives of	The course	e aims at giv	ing a	ın overall v	iew	of the	
the course	• various	s atomic mo	dels	and atomic	stru	icture	
	• wave p	article dual	ity of	f matter			
		ic table, per cal behaviou		ity in prope	erties	s and its applica	ation in explaining the
	• nature	of chemical	bone	ding, and			
	• fundan	nental conce	epts c	of organic of	hem	nistry	
Course Outline	UNIT I						
	Atomic st	ructure and	l Per	riodic tren	ds		
	number, A Bohr's me spectrum; Broglie Uncertaint rule, Pauli	tomic Spec odel of ato Photoelectr wavelength	tra; I om;Tl ic et -Dav Elec rincij	Black-Body he Franck ffect, Com isson an etronic Cor ple and Au	Rad Her pton d nfigu	diation and Plantz Experiment; effect; Dual Germer experimention of Atomorphic principle;	Experiment and Atomic nck's quantum theory - Interpretation of H- nature of Matter- De- eriment Heisenberg's ms and ions- Hund's

Unit II

Introduction to Quantum mechanics

Classical mechanics, Wave mechanical model of atom, distinction between a Bohr orbit and orbital; Postulates of quantum mechanics; probability interpretation of wavefunctions, Formulation of Schrodinger wave equation - Probability and electron density-visualizing the orbitals -Probability density and significance of Ψ and Ψ^2 .

Modern Periodic Table

Cause of periodicity; Features of the periodic table; classification of elements - Periodic trends for atomic size- Atomic radii, Ionic, crystal and Covalent radii; ionization energy, electron affinity, electronegativity-electronegativity scales, applications of electronegativity.

Problems involving the core concepts

UNIT-III: Structure and bonding - I

Ionic bond

Lewis dot structure of ionic compounds; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies, Madelung constant; relative effect of lattice energy and solvation energy; Ion polarisation – polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds; problems involving the core concepts.

Covalent bond

Shapes of orbitals, overlap of orbitals – σ and Π bonds; directed valency - hybridization; VSEPR theory - shapes of molecules of the type AB₂, AB₃, AB₄, AB₅, AB₆ and AB₇

Partial ionic character of covalent bond-dipole moment, application to molecules of the type A₂, AB, AB₂, AB₃, AB₄; percentage ionic character-numerical problems based on calculation of percentage ionic character.

UNIT-IV: Structure and bonding - II

VB theory – application to hydrogen molecule; concept of resonance - resonance structures of some inorganic species – CO₂, NO₂, CO₃^{2-,} NO₃⁻; limitations of VBT; MO theory - bonding, antibonding and nonbonding orbitals, bond order; MO diagrams of H₂, C₂, O₂, O₂⁺, O²⁻, O₂²⁻N₂, NO, HF, CO; magnetic characteristics, comparison of VB and MO theories.

Coordinate bond: Definition, Formation of BF₃, NH₃, NH₄⁺, H₃O⁺ properties

Metallic bond-electron sea model, VB model; Band theory-mechanism of conduction in solids; conductors, insulator, semiconductor – types, applications of semiconductors

Weak Chemical Forces - Vander Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole-induced dipole interactions. Repulsive forces; Hydrogen bonding – Types, special properties of water, ice, stability of DNA; Effects of chemical force, melting and boiling points.

UNIT-V:

Basic concepts in Organic Chemistry and Electronic effects

Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates; types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates – carbanions, carbocations, carbenes, arynes and nitrynes.

Inductive effect - reactivity of alkyl halides, acidity of halo acids, basicity of amines; inductomeric and electromeric effects.

Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines, stability of carbonium ions, carbanions and free

	radicals, reactivity of vinyl chloride, dipole moment of vinyl chloride and nitrobenzene, bond lengths; steric inhibition to resonance.
	Hyperconjugation - stability of alkenes, bond length, orienting effect of methyl group, dipole moment of aldehydes and nitromethane
	Types of organic reactions- addition, substitution, elimination and rearrangements
Extended Professional Component (isa part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC/JAM /TNPSC and others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended Text	 Madan, R. D. and Sathya Prakash, Modern Inorganic Chemistry, 2nded.; S. Chand and Company: New Delhi, 2003. Rao, C.N. R. University General Chemistry, Macmillan Publication: New Delhi, 2000. Puri, B. R. and Sharma, L. R. Principles of Physical Chemistry, 38thed.;Vishal Publishing Company: Jalandhar, 2002. Bruce, P. Y. and PrasadK. J. R. Essential Organic Chemistry, Pearson Education: New Delhi, 2008. Dash UN, Dharmarha OP, Soni P.L. Textbook of Physical Chemistry, Sultan Chand & Sons: New Delhi, 2016
Reference Books	 Maron, S. H. and Prutton C. P. Principles of Physical Chemistry, 4thed.; The Macmillan Company: Newyork, 1972. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heinemann: London, 1991. Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; Goel Publishing House: Meerut, 2001. Atkins, P.W. & Paula, J. Physical Chemistry, 10th ed.; Oxford University Press:New York, 2014. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed.; Addison, Wesley Publishing Company: India, 1993.
Website and e-learning source	1) https://onlinecourses.nptel.ac.in 2) http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm 3) http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html 4) https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding 5) https://www.chemtube3d.com/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.

CO2: classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.

CO3: apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.

CO4: evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects

CO5: construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules, nature of H – bonding and organic reaction mechanisms.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO'

Title of theCourse	Qua	ntitative In	orga	nic Estima Prepa			and Inorganic
Paper No.	Core II						
Category	Core	Year	Ι	Credits	2	Course	
		Semester	I	1		Code	
Instructional	Lecture	Tutorial		b Practice		Total	
hours per week	-	-	3			3	
Prerequisites		ondary chem					
Objectives of the		e aims at pro	vidir	ng knowled	lge o	on	
course		ory safety					
		ng glassware					
	_	tative estima					
	• prepara	ation of inor	ganio	e compoun	ds		
Course Outline	Unit I						
	Chemical	Laboratory	Safe	ety in Acad	demi	ic Institutions	
	prepare fo importance ventilation	r emergenc and care of system; fir	ies f PPE e ex	from unco E; proper u tinguishers	ontro se an	lled hazards; nd operation of	risk of the hazards, concept of MSDS; f chemical hoods and of fire extinguishers, osal.
	Common A	Apparatus l	U sed	in Quanti	itativ	ve Estimation	(Volumetric)
	conical flas		unne	l, dropper,			measuring cylinder, h bottle, watch glass,
	Principle o	of Quantitat	tive l	Estimation	ı (Vo	olumetric)	
	concept of standards, complexor	f mole, mo preparation netric, iodin	olalit of netric	y, molarit standard s and iodo	y, r oluti omet	normality; prir ons; theories ric titrations;	ent, oxidizing agent; mary and secondary of acid-base, redox, indicators – types, indicators, choice of
						rom stock solu	tion
	_	-	xalat	te using sta	andaı	rd ferrous amm	nonium sulphate

	Dichrometry Estimation of ferric alum using standard dichromate (external indicator) Estimation of ferric alum using standard dichromate (internal indicator) Iodometry Estimation of copper in copper sulphate using standard dichromate Argentimetry Estimation of chloride in barium chloride using standard sodium chloride/ Estimation of chloride in sodium chloride (Volhard's method) Unit III Complexometry Estimation of hardness of water using EDTA Estimations Estimation of iron in iron tablets Estimation of ascorbic acid. Preparation of Inorganic compounds- Potash alum Tetraammine copper (II) sulphate Hexamminecobalt (III) chloride Mohr's Salt
Chille apprimed	Vacariladas Duchlam salvina Analytical chility Ducfassional Commetency
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended	Reference Books:
Text	 Venkateswaran, V.; Veeraswamy, R.; Kulandivelu, A.R. Basic Principles of Practical Chemistry, 2nd ed.; Sultan Chand &Sons: New Delhi, 1997. Nad, A. K.; Mahapatra, B.; Ghoshal, A.; An advanced course in Practical Chemistry, 3rd ed.; New Central Book Agency: Kolkata, 2007.
ReferenceBooks	1. Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M.; Sivasankar, B.; <i>Vogel's Textbook of Quantitative Chemical Analysis</i> , 6 th ed.; Pearson Education Ltd: New Delhi, 2000.
Website and	Web References:
e-learning	1) http://www.federica.unina.it/agraria/analytical-chemistry/volumetric-
source	analysis
	2) https://chemdictionary.org/titration-indicator/

Course Learning Outcomes (for Mapping with POs and PSOs)

On successful completion of the course the students should be able to

CO1: explain the basic principles involved in titrimetric analysis and inorganic preparations.

CO2: compare the methodologies of different titrimetric analysis.

CO3: calculate the concentrations of unknown solutions in different ways and develop the skill to estimate the amount of a substance present in a given solution.

CO4: assess the yield of different inorganic preparations and identify the end point of various titrations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		FOOD CHEMISTRY								
Paper No.	SEC -I									
Category	NME	Year	I Credits		2	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total	-			
hours per	2	-	-			2				
week										
Prerequisite s	Higher sec	Higher secondary Chemistry								
Objectivesof	This cours	e aims at giv	ing a	n overall vi	ew o	f the				
the course	Types	of food								
	Food adulteration and poisons									
	• Food	additives and	d pres	ervation						
Course	UNIT I									
Outline	Food Adulteration									
	Sources of food, types, advantages and disadvantages. Food adulteration -									
	contamination of wheat, rice, milk, butter etc. with clay stones, water and									
						•	and their detection.			
						lytical technic				
	Unit-II									
	Food Poison									
	Food poisons - natural poisons (alkaloids - nephrotoxin) - pesticides, (DDT,									
	BHC, Mal	athion) -Che	mical	poisons - l	First	aid for poisor	consumed victims.			
	UNIT-III									
	Food Add	itives								
	Food addit	tives -artifici	al swe	eeteners – S	Sacch	arin - Cyclon	nate a n d Aspartate			
	Food flavo	ours -esters,	aldehy	des and he	teroc	yclic compou	nds – Food colours			
	- Emulsify	ying agents -	- prese	ervatives -l	eaver	ning agents. E	Baking powder –			
	yeast – tas	temakers – N	MSG -	· vinegar.						
	UNIT-IV									
	Beverages				•					
	Beverages-softdrinks-soda-fruitjuices-alcoholicbeverages-examples.									
	Carbonation-addictionto alcohol- diseases ofliver andsocial problems.									

	UNIT-V
	Edible Oils
	Fats and oils - Sources of oils - production of refined vegetable oils -
	preservation.Saturated and unsaturated fats - iodine value - role of MUFA and
	PUFA in preventing heartdiseases-determination of iodine value,RM
	value, saponification values and their significance.
Recommended	
Text	2010.
	2. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand
	& Co.Publishers, second edition, 2006.
	3. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishning house,
	2010.
	4. Food Chemistry, Dr. L. Rakesh Sharma, Evincepub publishing, 2022.
	5. Food processing and preservation, G. Subbulakshmi, Shobha A Udipi,
	Pdmini S Ghugre, New age international publishers, second edition, 2021.
Reference	1. HD. Belitz, Werner Grosch, Food Chemistry Springer Science &
Books	Business Media, 4 th Edition, 2009.
	2. M.Swaminathan, Food Science and Experimental Foods, Ganesh and
	Company,1979.
	3. Hasenhuettl, Gerard. L.; Hartel, Richard. W. Food Emulsifiers and their
	applications Springer New York 2nd ed. 2008.
	4. Food Chemistry, HD. Belitz, W. Grosch, P. Schieberle, Springer, fourth
	revised and extended edition, 2009.
	5. Principles of food chemistry, John M. deMan, John W. Finley, W. Jefferey
	Hurst, Chang Yong Lee, Springer, Fourth edition, 2018.
Website and	

e-learning source

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

- **CO 1:** learn about Food adulteration contamination of Wheat, Rice, Milk, Butter.
- CO 2: get an awareness about food poisons like natural poisons (alkaloids nephrotoxin) pesticides, DDT, BHC, Malathion
- **CO 3:** get an exposure on food additives, artificial sweeteners, Saccharin, Cyclomate and Aspartate in the food industries.
- **CO 4:** acquire knowledge on beverages, soft drinks, soda, fruit juices and alcoholic beverages examples.
- **CO 5:** study about fats and oils Sources of oils production of refined vegetable oils preservation. Saturated and unsaturated fats -MUFA and PUFA

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to	3.0	3.0	3.0	3.0	3.0
Pos					

Level of Correlation between PSO's and CO's

Title of the		ROLE	OF C	HEMISTR	XY II	N DAILY LII	FE
Course							
Paper No.	SEC-I						
Category	NME	Year	I	Credits	2	Course	
		Semester				Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours perweek	2	-	-			2	
Prerequisites	Higher sec	ondary chen	nistry				
Objectives of the	This course	e aims at pro	oviding	g an overall	viev	v of the	
course	• importa	ance of Cher	mistry	in everyday	y life	;	
	• chemis	try of buildi	ng ma	terials and	food		
	• chemis	try of Drugs	and	pharmaceut	icals		
Course	UNIT-I						
Outline	C 1	C 1	. 1	1 '	1	1 1:C A:	, 1
		•			•	•	- components and
	_		•				een - house effect
		•		•			ater, qualities of
	-	iter, soft and	d hard	water, me	thods	s of removal	of hardness-water
	pollution						
	Unit-II						
	Building n	naterials - c	ement	, ceramics,	glas	ss and refract	ories - definition,
					_		e, PVC, bakelite,
	_			•		reparation and	
				J	1	1	,
	UNIT-III						
	Food and	Nutrition -	Carbo	hydrates, F	rote	ins, Fats - de	efinition and their
	importance	as food co	onstitu	ents – bala	ancec	diet – Calo	ries minerals and
	vitamins (s	sources and	their	physiologic	cal i	mportance). C	Cosmetics – tooth
	paste, face	powder, soa	aps an	d detergent	s, sh	ampoos, nail j	polish, perfumes -
	general for	mulation and	d prep	arations - p	ossib	ole hazards of	cosmetic use.
	UNIT-IV						
	Chemicals	in food pro	ductio	on – fertiliz	zers -	- need. natur	al sources; urea,
		-					- solid, liquid and
		uclear fuel ex	-	-		-13001110411011	zona, nquia una
	S 1 0 3.2, 110	1001 01	P1				

	UNIT-V
	Pharmaceutical drugs - analgesics and antipyretics - paracetamol and aspirin. Colour chemicals - pigments and dyes - examples and applications. Explosives - classification and examples.
Recommended	1.Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house,
Text	2010.
	2.A textbook of pharmaceutical chemistry by Jayashree Ghosh, S Chand
	publishing, 2012.
	3.S. Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications,
	Karur, 2006.
	4.B. K, Sharma, Industrial Chemistry; GOEL publishing house, Meerut,
	sixteenth edition, 2014.Introduction to forensic chemistry, Kelly M. Elkins, CRC Press Taylor & Francis Group, 2019.
	5. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S.
	Chand & Co.Publishers, second edition, 2006.
ReferenceBooks	1.Randolph. Norris Shreve, Chemical Process Industries, McGraw-Hill,
	Texas, fourthedition, 1977.
	2.W.A.Poucher, Joseph A.Brink, Jr. Perfumes, Cosmetics and Soaps, Springer,
	2000.
	3. A.K.De,EnvironmentalChemistry,NewAge InternationalPublicCo.,1990.
Website and	
e-learning	
source	

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

- CO1: learn about the chemicals used in everyday life as well as air pollution and water pollution.
- CO2: get knowledge on building materials cement, ceramics, glass and plastics, polythene, PVC bakelite, polyesters,
- **CO3:** acquire information about Food and Nutrition. Carbohydrates, Proteins, Fats Also have an awareness about Cosmetics Tooth pastes, face powder, soaps and detergents.
- **CO4:** discuss about the fertilizers like urea, NPK fertilizers and super phosphate. Fuel classification solid, liquid and gaseous; nuclear fuel examples and uses
- **CO5:** have an idea about the pharmaceutical drugs analgesics and antipyretics like paracetamol and aspirin and also about pigments and dyes and its applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	GENERAL CHEMISTRY-II									
Course										
Paper No.	Core III									
Category	Core	Year I Credits 5 Course								
		Semester	II			Code				
Instructional	Lecture	Tutorial	Lal	Practice		Total				
hours per week	4	1	-			5				
Prerequisites	General Cl	hemistry I								
Objectives of the	This cours	e aims at pr	ovidi	ng an over	all vi	iew of the				
course	• chemis	try of acids	, base	s and ioni	c equ	ıilibrium				
	• propert	ties of s and	l p-blo	ock elemei	ıts					
	• chemis	try of hydro	carbo	ons						
	applica	tions of aci	ds an	d bases						
	1				ts and	d hydrocarbons				
	Compo	anas or ma	111 010	ok cicinen	is and	a nyarovaroono				
Course Outline	UNIT-I									
Course Outline	01111-1									
		ses and Ioni			eniu	s concept, Bronsted-Lowry concept,				
	Concepts	or Acius al	и ра	ses - Alli	iciiiu	s concept, bronsicu-Lowry concept,				

Lewis concept; Relative strengths of acids, bases and dissociation constant; dissociation of poly basic acids, ionic product of water, pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting degree of dissociation; acid base indicators, theory of acid base indicators – action of phenolphthalein and methyl orange, titration curves - use of acid base indicators:

Buffer solutions – types, mechanism of buffer action in acid and basic buffer, Henderson-Hasselbalch equation;

Salt hydrolysis - salts of weak acids and strong bases, weak bases and strong acids, weak acids and weak bases - hydrolysis constant, degree of hydrolysis and relation between hydrolysis constant and degree of hydrolysis;

Solubility product - determination and applications; numerical problems involving the core concepts.

Unit-II

Chemistry of s - Block Elements

Hydrogen: Position of hydrogen in the periodic table. Alkali metals: Comparative study of the elements with respect to oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of Li with Mg. Preparation, properties and uses of NaOH, Na₂CO₃, KBr, KClO₃ alkaline earth metals. Anomalous behaviour of Be.

Chemistry of p- Block Elements (Group 13 & 14)

preparation and structure of diborane and borazine. Chemistry of borax. Extraction of Al and its uses. Alloys of Al.

comparison of carbon with silicon. Carbon-di-sulphide – Preparation, properties, structure and uses. Percarbonates, per monocarbonates and per dicarbonates.

UNIT-III

Chemistry of p- Block Elements (Group 15-18)

General characteristics of elementsof Group 15; chemistry of H₂N-NH₂, NH₂OH, HN₃ and HNO₃. Chemistry of PH₃, PCl₃, PCl₅, POCl₃, P₂O₅ and oxy acids of phosphorous (H₃PO₃ and H₃PO₄).

General properties of elements of group16 - Structure and allotropy of elements - chemistry of ozone - Classification and properties of oxides - oxides of sulphur and selenium - Oxy acids of sulphur (Caro's and Marshall's acids).

Chemistry of Halogens: General characteristics of halogen with reference to electro-negativity, electron affinity, oxidation states and oxidizing power. Peculiarities of fluorine. Halogen acids (HF, HCl, HBr and HI), oxides and oxy acids (HClO₄). Inter-halogen compounds (ICl, ClF₃, BrF₅ and IF₇), pseudo halogens [(CN)₂ and (SCN)₂] and basic nature of Iodine.

Noble gases: Position in the periodic table. Preparation, properties and structure of XeF_2 , XeF_4 , XeF_6 and $XeOF_4$; uses of noble gases - clathrate compounds.

UNIT-IV

Hydrocarbon Chemistry-I

Petroproducts: Fractional distillation of petroleum; cracking, isomerisation, alkylation, reforming and uses

Alkenes-Nomenclature, general methods of preparation – Mechanism of β -elimination reactions – E_1 and E_2 mechanism - factors influencing – stereochemistry – orientation – Hofmann and Saytzeff rules. Reactions of alkenes – addition reactions – mechanisms – Markownikoff's rule, Kharasch effect, oxidation reactions – hydroxylation, oxidative degradation, epoxidation, ozonolysis; polymerization.

Alkadienes

Nomenclature - classification - isolated, conjugated and cumulated dienes; stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to conjugated dienes - Diels-Alder reactions - polymerisation - polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene.

Alkynes

Nomenclature; general methods of preparation, properties and reactions; acidic nature of terminal alkynes and acetylene, polymerisation and isomerisation.

Cycloalkanes: Nomenclature, Relative stability of cycloalkanes, Bayer's strain theory and its limitations. Conformational analysis of cyclohexane, mono and di substituted cyclohexanes.

Geometrical isomerism in cyclohexanes.

UNIT-V

Hydrocarbon Chemistry - II

Benzene: Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene - Effect of substituent – orientation and reactivity.

Polynuclear Aromatic hydrocarbons: Naphthalene – nomenclature, Haworth synthesis; physical properties, reactions – electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel – Crafts acylation & alkylation, preferential substitution at \square - position – reduction, oxidation – uses.

Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and Haworth synthesis; physical properties; reactions - Diels-Alder reaction, preferential substitution at C-9 and C-10; uses.

Extended
Professional
Component (is a part of internal

Questions related to the above topics, from various competitive examinations UPSC/JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

. 1	7
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2 nd ed,
Text	S.Chand and Company, New Delhi.
T CAL	2. Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003),
	Advanced Inorganic Chemistry, 17 th ed., S.Chand and Company, New
	Delhi.
	3. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3 rd ed.,
	S.Chand and Company, New Delhi.
	4. Tewari K S, Mehrothra S N and Vishnoi N K, (1998), Text book of
	Organic Chemistry, 2 nd ed., Vikas Publishing House, New Delhi.
	5. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry,
	38 th ed., Vishal Publishing Company, Jalandhar.
ReferenceBooks	1. Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4 th
	ed., The Macmillan Company, Newyork.
	2. Barrow G M, (1992), Physical Chemistry, 5 th ed., Tata McGraw Hill, New
	Delhi.
	3. Lee J D, (1991), Concise Inorganic Chemistry, 4 th ed., ELBS William
	Heinemann, London.
	4. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and
	Reactivity, 4 th ed., Addison Wesley Publishing Company, India.
	5. Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol – I, 26 th ed.,
	Goel Publishing House, Meerut.
	6. Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry,
	8 th ed., Goel Publishing House, Meerut.
Website and	https://onlinecourses.nptel.ac.inhttp://cactus.dixie.edu/smblack/chem1010/lec
e-learning	ture_notes/4B.html
source	http://www.auburn.edu/~deruija/pdareson.pdfhttps://swayam.gov.in/course/64
	-atomic-structure-and-chemical-bonding
	MOOC companys
	MOOC components
	http://nptel.ac.in/courses/104101090/
	Lecture 1: Classification of elements and periodic properties
	http://nptel.ac.in/courses/104101090/

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of

the course the students should be able to

- CO1: explain the concept of acids, bases and ionic equilibria; periodic properties of s and pblock elements, preparation and properties of aliphatic and aromatic hydrocarbons
- CO2: discuss the periodic properties of sand p- block elements, reactions of aliphatic andaromatic hydrocarbons and strength of acids
- CO3: classify hydrocarbons, types of reactions, acids and bases, examine the properties s and p-block elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
- CO4: explain theories of acids, bases and indicators, buffer action and important compoundsof s-block elements
- CO5: assess the application of hard and soft acids indicators, buffers, compounds of s and p- block elements and hydrocarbons

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	QUALITATIVE ORGANIC ANALYSIS AND PREPARATION OF							
Course	ORGANIC COMPOUNDS							
Paper No.	Core IV							
Category	Core	Year	I	Credits	2	Course		
		Semester	II			Code		
Instructional	Lecture	Tutorial		Practice		Total		
hours per week	-	-	3			3		
Prerequisites		eneral Chemistry II						
Objectives of	This course aims at providing knowledge on							
the course	laboratory safety							
	handling glass wares							
	analysis of organic compounds							
	preparation of organic compounds							
	Propagation of organic							
Course Outline	UNIT I							
	g c . 1		1 6					
	Safety rules, symbols and first-aid in chemistry laboratory							
	Basic ideas about Bunsen burner, its operation and parts of the flame.							
	Chemistry laboratory glassware -basis information and uses							
	Unit II							
	Qualitative Organic Analysis							
	Preliminary examination, detection of special elements - nitrogen, sulphur and halogens Aromatic and aliphatic nature, Test for saturation and unsaturation, identification of functional groups using solubility tests Confirmation of functional groups • monocarboxylic acid, dicarboxylic acid							
	monohydric phenol, polyhydric phenol							
	• aldehyde, ketone, ester							
	 carbohydrate (reducing and non-reducing sugars) 							
	primary, secondary, tertiary amine							
	 monoamide, diamide, thioamide anilide, nitro compound 							
	Preparation of derivatives for functional groups						oups	
	<u> </u>	Troparatio	01		101	1 gro	~r~	

UNIT III

Preparation of Organic Compounds

- i. Nitration picric acid from Phenol
- ii. Halogenation p-bromo acetanilide from acetanilide
- iii. Oxidation benzoic acid from Benzaldehyde
- iv. Microwave assisted reactions in water:
- v. Methyl benzoate to Benzoic acid
- vi. Salicylic acid from Methyl Salicylate
- vii. Rearrangement Benzil to Benzilic Acid
- viii. Hydrolysis of benzamide to Benzoic Acid

	Separation and Purification Techniques (Not for Examination)						
	1. Purification of organic compounds by crystallization (from water / alcohol) and distillation						
	2. Determination of melting and boiling points of organic compounds.						
	3. Steam distillation - Extraction of essential oil from citrus fruits/eucalyptus leaves.						
	4. Chromatography (any one) (Group experiment)						
	(i) Separation of amino acids by Paper Chromatography						
	(ii)Thin Layer Chromatography - mixture of sugars / plant pigments /permanganate dichromate.						
	(iii) Column Chromatography - extraction of carotene, chlorophyll and xanthophyll from leaves / separation of anthracene - anthracene picrate.						
	5. Electrophoresis – Separation of amino acids and proteins. (Demonstration)						
	6. Isolation of casein from milk/Determination of saponification value of oil or fat/Estimation of acetic acid from commercial vinegar. (Any one Group experiment) (4,5& 6–not for ESE)						
Reference Books	 Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R. Basic Principles of Practical Chemistry, 2nd ed.; Sultan Chand: New Delhi, 2012. Manna, A.K. Practical Organic Chemistry, Books and Allied: India, 2018. Gurtu, J. N; Kapoor, R. Advanced Experimental Chemistry (Organic), 						
	 Sultan Chand: New Delhi, 1987. 4. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R. <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th ed.; Pearson: India,1989. 						
Website and e-learning source	https://www.vlab.co.in/broad-area-chemical-sciences						

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: observe the physical state, odour, colour and solubility of the given organic compound.

CO2: identify the presence of special elements and functional group in an unknown organic compound performing a systematic analysis.

CO3: compare mono and dicarboxylic acids, primary, secondary and tertiary amines, mono and diamides, mono and polyhydric phenols, aldehyde and ketone, reducing and non-reducing sugars and explain the reactions behind it.

CO4: exhibit a solid derivative with respect to the identified functional group.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of	2.0	2.0	• •	• •	•
Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	DAIRY CHEMISTRY								
Course									
Paper No.	SEC- II								
Category	NME	Year	I	Credits	2	Course			
		Semester	II	7		Code			
Instructional	Lecture	Tutorial	Lal	Practice		Total	1		
hours per week	2	-	-			2			
Prerequisites	Higher sec	ondary cher	nistry	7					
Objectives of the	This cours	e aims at pro	ovidir	ng an overa	ll vie	w of the			
course	chemistry of milk and milk products								
	1	ssing of milk		•					
	1	vation and f		tion of milk	prod	lucts.			
	proser		01111		Proc				
Course Outline	UNIT I								
Course Guinne									
	1 -	ion of Milk							
		-		-			nts of milk - lipids,		
	proteins, c	arbohydrate	s, vit	amins and	mine	rals - physica	al properties of milk -		
	colour, od	lour, acidity	, spe	ecific gravi	ity, v	riscosity and	conductivity -Factors		
	affecting t	he composit	tion o	of milk - ac	lulter	ants, preserva	tives with neutralizer-		
	examples a	and their det	ection	n- estimatio	n of	fat, acidity and	d total solids in milk.		
	Unit II								
	D .	C 3 4 2 1 1							
	Processing	_	1		c ·				
							ns in milk, physico –		
		-	_	-		_	rocessing - boiling,		
	1 -			-			ch and HTST (High		
	1 ^		me) -	- Vacuum	pastei	urization – Ul	ltra High Temperature		
	Pasteurizat	tion.							
	UNIT III								
	Major Mi	lk Products	.						
	1			mnosition	- ch	emistry of	creaming process -		
				-		-	eam - estimation of fat		
	~		_		_		nurning – desi butter -		
				-		-	-		
							n butter. Ghee - major		
						-	ir detection - rancidity		
	- definition	1 - preventio	n - aı	ntioxidants	and s	ynergists - nai	tural and synthetic.		

	UNIT IV								

	Special Milk Standardised milk - definition - merits - reconstituted milk - definition - flow diagram of manufacture - Homogenised milk - flavoured milk - vitaminised milk - toned milk - Incitation milk - Vegetable toned milk - humanized milk -
	condensed milk - definition, composition and nutritive value. UNIT V
	Fermented and other Milk Products Fermented milk products – fermentation of milk - definition, conditions, cultured milk - definition of culture - example, conditions - cultured cream, butter milk - Bulgarious milk -acidophilous milk – Yoheer Indigeneous products- khoa and chhena definition - Ice cream -definition-percentage composition-types-ingredients-manufacture of ice—cream, stabilizers - emulsifiersandtheirrole-milkpowder-definition-needformakingmilkpowder-dryingprocess-types of drying.
Recommended Text	 K. Bagavathi Sundari, Applied Chemistry, MJP Publishers, first edition, 2006. K. S. Rangappa and K.T. Acharya, Indian Dairy Products, Asia Publishing House New Delhi, 1974. Text book of dairy chemistry, M.P. Mathur, D. Datta Roy, P. Dinakar, Indian Council of Agricultural Research, 1 st edition, 2008. A Text book of dairy chemistry, Saurav Singh, Daya Publishing house, 1 st edition,2013. Text book of dairy chemistry, P. L. Choudhary, Bio-Green book publishers, 2021.
ReferenceBooks	 Robert Jenness and S. Patom, Principles of Dairy Chemistry, S.Wiley, New York, 2005. F.P.Wond, Fundamentals of Dairy Chemistry, Springer, Singapore, 2006. Sukumar De, Outlines of Dairy Technology, Oxford University Press, New Delhi, 1980. P.F.Fox and P.L.H. Mcsweeney, Dairy Chemistry and Biochemistry, Springer, Second edition, 2016. Dairy chemistry and biochemistry, P. F. Fox, T. Uniacke-Lowe, P.L.H. McSweeney, J.A. OMahony, Springer, Second edition, 2015.
Website and e-learningsource	

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the

course the students should be able to

- CO 1: understand about general composition of milk constituents and its physical properties.
- CO 2: acquire knowledge about pasteurization of Milk and various types of pasteurization -Bottle, Batch and HTST Ultra High Temperature Pasteurization.
- CO 3: learn about Cream and Butter their composition and how to estimate fat in cream and Ghee
- CO 4: explain about Homogenized milk, flavoured milk, vitaminised milk and toned milk.
- CO 5: have an idea about how to make milk powder and its drying process types of dryingprocess

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of					
Course Contribution to	3.0	3.0	3.0	3.0	3.0
Pos					

Level of Correlation between PSO's and CO's

Title of theCourse	e COSMETICS AND PERSONAL GROOMING								
Damar No	SEC III (Digainlina Cu	: 6:						
Paper No.	`	Discipline Sp			_				
Category	SEC	Year	I	Credits	2	Course			
		Semester	I/ II			Code			
Instructional	Lecture	Tutorial	La	b Practice		Total			
hours per week	2	-	-			2			
Prerequisites		ondary Chemi							
Objectives of the		aims at famil		•					
course				• •	f co	smetics and t	heir significance		
		r, skin and de							
	• ma	keup preparat	tions	and perso	nal į	grooming			
Course Outline	Uni I Skin								
	care								
	Nutrition o	of the skin,	skin	care and	cle	ansing of th	ne skin; face powder –		
							all purpose, shaving and		
	1		•				dvantages; astringent and		
		 key ingredie 	ents,	skin lightn	ess,	depilatories.			
	Unit II Hai	r							
	care	timos nom	don	room ligu	;a .	ral ingradia	ents; conditioner –types		
	ingredient	• •	uci, i	orcani, nqu	1u, Ę	ger – mgreuie	ints, conditioner –types		
	Dental care								
		s – ingredient	ts — 1	nouth was	h				
	Unit III								
	Make up								
	Base – four concealers,		es –	ingredien	ts; l	ipstick, eyeli	ner, mascara, eyeshadow		
	concealers,	Touge							
	Unit IV								
	Perfumes	N-41	1	.		-£4114	1 .1.:-64:44		
			•	0 1		•	used, chief constituents;		
	_	_					vet cat, musk from musk		
	1	etic – classifi		-	ızınş	g characterist	ıcs –		
	esters – alco	ohols – aldehy	ydes	ketones					
	Unit V								
	Beauty trea	atments							
	Facials - ts	mes – advan	tages	s – disadv	anta	ges: face ma	sks – types; bleach -		
	-	-	_			-	eyelash tinting; perming		
	- types; ha		and o	lyeing; pe	rma	nent waving	- hair straightening; wax		

Recommended	1. Thankamma Jacob, (1997) Foods, drugs and cometics – A consumer guide,
Text	Macmillan publication, London.
ReferenceBooks	 Wilkinson J B E and Moore R J, (1997) Harry's cosmeticology, 7th ed., Chemical Publishers, London. George Howard, (1987) Principles and practiceof perfumes and cosmetics, Stanley Therones, Chettenham
Website and e-learning source	 http://www.khake.com/page75.html Net.foxsm/list/284

completion of the course the students should be able to

- CO1: know about the composition of various cosmetic products
- CO2 understand chemical aspects and applications of hair care and dental care and skin care products.
- CO3 understand chemical aspects and applications of perfumes and skin care products.
- CO4 to understand the methods of beauty treatments their advantages and disadvantage
- CO5 understand the hazards of cosmetic products.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	GENERAL CHEMISTRY -III								
Course									
Paper No.	Core V								
Category	Core	Year	II	Credits	5	Course			
		Semester	III			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	4	1	-			5			
Prerequisites	General Ch	emistry – I a	nd II						
Objectives of the	This course	aims to pro	provide a comprehensive knowledge on						
course	 the physical properties of gases, liquids, solids and X-ray diffraction of solids. fundamentals of nuclear chemistry and nuclear waste management. applications of nuclear energy basic chemistry of halo-organic compounds, phenol and other aromatic alcohols. preparation and properties of phenols and alcohols. 								
	prepara	ation and pro	рсги	es of phen	015 6	ind alcohols.			
Course Outline	UNIT I Gaseous state Kinetic molecular model of a gas: postulates and derivation from the kinetic gas equation; The Maxwell –Boltzmann distribution of speed of molecules- average, root mean square and most probable velocity and average kinetic energy, law of equipartition of energy, degrees of freedom and molecular basis of heat capacities. Collision frequency; collision diameter; mean free path and viscosity								
	plots); comp gases. equal Boyle temp gases, isoth - continuity	•							
	Liquid and	Solid State							
	Liquid and Solid State Properties of Liquids- Surface tension, viscosity and their applications. Crystalline and amorphous – differences - geometry, isotropy and anisotropy, melting point; isomorphism, polymorphism. Crystals –size and shape; laws of crystallography; symmetry elements – plane,								

centre and axis; Miller indices, unit cells and space lattices; classification of crystal systems; Bravais lattices; X – ray diffraction – Bragg's equation

Packing in atomic solids – simple cubic, body centered cubic, face centered and hexagonal close packing; Co-ordination number in typical structures - NaCl, CsCl, ZnS, TiO₂; comparison of structure and properties of diamond and graphite; numerical problems involving core concepts

Defects in solids - stoichiometric and nonstoichiometric defects.

Liquid crystals – classification and applications.

UNIT-III

Nuclear Chemistry

Natural radioactivity - α , β and γ rays; half-life period; Fajan–Soddy group displacement law; Geiger–Nattal rule; isotopes, isobars, isotones, mirror nuclei, iso diaphers; nuclear isomerism; radioactive decay series; magic numbers; units – Curie, Rutherford, Roentgen; nuclear stability - neutron- proton ratio; binding energy; packing fraction; mass defect. Simple calculations involving mass defect and B.E., decay constant and $t_{1/2}$ and radioactive series.

Isotopes – uses – tracers – determination of age of rocks by radiocarbon dating. (Problems to be worked out)

Nuclear energy; nuclear fission and fusion – major nuclear reactors in India; radiation hazards, disposal of radioactive waste and safety measures.

UNIT-IV

Halogen derivatives Aliphatic

halogen derivatives

Nomenclature and classes of alkyl halides – isomerism, physical properties, Chemical reactions. Nucleophilic substitution reactions – S_N1 , S_N2 and S_Ni mechanisms with stereochemical aspects and effect of solvent.

Di, Tri & Tetra Halogen derivatives: Nomenclature, classification, preparation, properties and applications.

Aromatic halogen compounds

Nomenclature, preparation, properties and uses

Mechanism of nucleophilic aromatic substitution – benzyne intermediate.

Arvl alkyl halides

Nomenclature, benzyl chloride – preparation – preparation properties and uses

Alcohols: Nomenclature, classification, preparation, properties, use; conversions – ascent and descent of series; test for hydroxyl groups. Oxidation of diols by periodic acid and lead tetraacetate.

UNIT-V Phenols Nomenclature; classification, Preparation from diazonium salts, cumene, Dow's process, Raching process; properties – acidic character and effect of substitution on acidity. Reactions – Fries, claisen rearrangement, Electrophilic substitution reactions, Reimer - Teimen, Kolbe, Schmidt, Gatermann synthesis, Libermann, nitro reaction, phthalein reaction. Resorcinol, quinol, picric acid – preparation, properties and uses. Aromatic alcohols Nomenclature, benzyl alcohol – methods of preparation – hydrolysis, reduction of benzaldehyde, Cannizzaro reaction, Grignard synthesis, physical properties, reactions – reaction with sodium, phosphorus pentachloride, thionyl chloride, acetic anhydride, hydrogen iodide, oxidation - substitution on the benzene nucleus, uses. Thiols: Nomenclature, structure, preparation and properties. Extended Questions related to the above topics, from various competitive examinations Professional UPSC/JAM /TNPSC others to be solved Component (is a (To be discussed during the Tutorial hours) part of internal component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional Competency, from this course Professional Communication and Transferable skills. Recommended 1. B.R. Puri, L.R. Sharma, M.S. Pathania; *Principles of Physical Chemistry*, 46th edition, Vishal Publishing, 2020. Text 2. B.R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers and Distributors, New Delhi, thirtieth edition, 2009. 3. 4. P.L. Soni and Mohan Katyal, Textbook of Inorganic Chemistry, Sultan Chand & amp; Sons, twentieth edition, 2006. 4. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2003. 5. S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry,

Macmillan India Ltd., third edition, 1994.

ReferenceBooks	1. T. W. Graham Solomons, Organic Chemistry, John Wiley & Sons,								
	fifth edition, 1992.								
	2. A. Carey Francis, Organic Chemistry, Tata McGraw-Hill Education Pvt.,								
	Ltd., New Delhi, seventh edition, 2009.								
	3. I. L. Finar, <i>Organic Chemistry</i> , Wesley Longman Ltd, England, sixth edition, 1996.								
	4. P. L. Soni, and H. M.Chawla - <i>Text Book of Organic Chemistry</i> , New Delhi, Sultan Chand & Sons, twenty ninth edition, 2007.								
	5. J.D. Lee, <i>Concise Inorganic Chemistry</i> , Blackwell Science, fifth edition, 2005.								
Website and	MOOC components								
e-learning	https://nptel.ac.in/courses/104104101 Solid								
source	state chemistry								
	https://nptel.ac.in/courses/103106071								
	Nuclear industries and safety								
	https://nptel.ac.in/courses/104106119s								
	Introduction to organic chemistry								

completion of the course the students should be able to

CO1: explain the kinetic properties of gases by using mathematical concepts.

CO2: describe the physical properties of liquid and solids; identify various types of crystals with respect to its packing and apply the XRD method for crystal structure determinations.

CO3: investigate the radioactivity, nuclear energy and it's production, also the nuclear waste management.

CO4: write the nomenclature, physical & chemical properties and basic mechanisms of halo organic compounds and alcohols.

CO5: investigate the named organic reactions related to phenol; explain the preparation and properties of aromatic alcohol including thiol.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the		QUA	LITA	ATIVE IN	ORC	GANIC ANAL	YSIS	
Course								
Paper No.	Core VI							
Category	Core	Year	II	Credits	2	Course		
		Semester	III			Code		
Instructional	Lecture	Tutorial	Lab	Practice		Total		
hours per	1	-	3			4		
week								
Prerequisites	General ch							
Objectives of	•	the skill on	syst	ematic ana	lysis	of simple inor	ganic salts and mixture	
the course	of salts.							
Course	Semi - Mio	cro Oualitat	ive A	Analysis				
Outline	1. Analysis	Semi - Micro Qualitative Analysis1. Analysis of simple acid radicals: Carbonate, sulphide, sulphate, thiosulphite, chloride, bromide, iodide, nitrate						
	2. Analysis of interfering acid radicals: Fluoride, oxalate, borate, phosphate, arsenate, arsenite.3. Elimination of interfering acid radicals and Identifying the group of basic							
	 4. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron, aluminium, arsenic, zinc,manganese, nickel, cobalt, calcium, strontium, barium, magnesium, ammonium 						bismuth, cadmium, tin,	
	5. Analysis		ıre -	I to VIII			ons and two anions (of	
Skills acquired from this course		e, Problem se al Communic					nal Competency,	
Recommended Text	V. Venkato	Reference Books: V. Venkateswaran, R. Veeraswamy and A. R. Kulandivelu, Basic Principles of Practical Chemistry, Sultan Chand & Sons, New Delhi, second edition, 1997.						
Website and e-learning source	https://wwv	w.vlab.co.in/	broac	l-area-cher	nical-	-sciences		
Course Learnin	g Outcomes	(for Mapp	ing v	vith POs a	nd P	PSOs)		

On successful completion of the course the students should be able to

CO 1: acquire knowledge on the systematic analysis of Mixture of salts.

CO 2: identify the cations and anions in the unknown substance.

CO 3: identify the cations and anions in the soil and water and to test the quality of water.

CO4: assess the role of common ion effect and solubility product

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse		ENTREPR	RENE	URIAL SI	KILL	S IN CHEM	IISTRY	
Paper No.	SEC IV							
Category	Skill	Year	II	Credits	redits 1 Course			
	Enhanc	Semester	III	1		Code		
	ement							
	Course							
Instructional	Lecture	Tutorial	Lab	Practice	•	Total	•	
hours per week	-	-	1			1		
Prerequisites	General C	hemistry				•		
Objectives of the	The course	e aims at pro	oviding	g training t	О			
course	• de	evelop entre	prenet	ır skills in	stude	ents		
	• to	o provide ha	inds o	n experienc	e to	prepare and d	levelop products	
	• d	evelop start	ups					
Course Outline	UNIT -I							
	andtoxicchemicals -Common adulterants. Food additives, Natural and synthetic anti-oxidants, glazing agents (hazardous effect),food colourants, Preservatives, leavening agents,Baking powder and baking soda, yeast,MSG,vinegar. Dyes Classification – Natural, synthetic dyes and their characteristics – basic methods and principles of dyeing							
	UNIT II							
	Hands	on Experie	nce (S	tudents ca	n ch	oose any four	r)	
	Detection of adulterants in food items like coffee, tea, pepper, chilli powder, turmeric powder, butter, ghee, milk, honey etc., by simple techniques. Preparation of Jam, squash and Jelly, Gulkand, cottage cheese. Preparation of products like candles, soap, detergents, cleaning powder, shampoos, pain balm, tooth paste/powde rand disinfectants in small scale						by simple	
	Extraction	of oils from	ı spice	es and flow	ers.			
	Dyeing –	water samp cotton fabric tie and dye,	s with	natural ar		nthetic dyes		

Skills acquired	Entrepreneurial skills.
from this course	
Recommended	1. George S & Muralidharan V, (2007) Fibre to Finished Fabric – A Simple
Text	Approach, Publication Division, University of Madras, Chennai. 2. Appaswamy G P, A Handbook on Printing and Dyeing of Textiles.
Reference Books	Shyam Jha, Rapid detection of food adulterants and contaminants (Theory and Practice), Elsevier, e Book ISBN 9087128004289, 1st Edition, 2015
Website and	https://www.vlab.co.in/broad-area-chemical-sciences
e-learning source	

On completion of the course the students should be able to CO 1: identify adulterated food items by doing simple chemical tests. CO 2: prepare cleaning products and become entrepreneurs

CO 3: educate others about adulteration and motivate them to become entrepreneurs.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
Weightage	6	6	6	6	6
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of the	PESTICIDE CHEMISTRY						
Course	CI II E .I		O	. V (D''	.1*		
Paper No.		ancement (_		
Category	Skill	Year	II	Credits	2	Course	
	Enhanc	Semester	III			Code	
	ement Course						
	Lecture	Tutorial	Lah	Practice		Total	
hours per week	2	- utoriai	- Lab	Tractice		2	
Prerequisites	Fundamen	tals in chem	istrv				
Objectives of the		rse aims to		ing the stu	dents		
course		-	•	•			nd their toxicity.
	1	•				pesticides in in	•
		sidues and i			11 01 1	restrettes in in	the form of
				•		1 6: 11	1
	• K1	nowledge on	choic	e of altern	ate a	nd eco-friendly	pesticides.
Course Outline	Unit I						
			-	_		-	Pesticides: Brief
							gets), structures,
		ames, physi					1 1 1
		•				•	mammals, birds,
		ecies etc. Me					1.1
							ides with respect
							mical properties,
	1 -	degradation	, meta	abolism, fo	ormu	lations, Mode	of action, uses,
	toxicity.	1 4	J D	1 1 41	4	A 1 4 .	C1-1i1
							Chlorpyriphos, – Endosulfan,
		_	_		-	e, Methomyl, I	
	Unit II						
	Pesticides	residues:	Int	roduction-	an	nlication of	agrochemicals,
							esidues,remedies.
							phere, action of
				•	•	les residues in	
	Г						tic environment.
							tion and transport
				•		•	y, decomposition
		lation by cli					J,
	D	D 11	P.P.	, ,		100 . 0	
							cides residue on
							sticides, action of
							residues- sample
	preparation			f pestici			*
	_	truits) simp	ole me	thods and	sche	emes of analys	sis, multi-residue
	analysis.						

	Unit III
	Biopesticides: Pheromones, attractants, repellents – Introduction, types and
	application (8- Dodecen-1-ol, 10-cis-12-hexadecadienoic, Trimedlure,
	Cue-lure, methyl eugenol, N,N- Diethyl-m-toluamide, Dimethyl phthalate,
	Icaridin). Baits- Metaldehyde, Iron (II) phosphate,
	Indoxacarb, Zinc Phosphide, Bromadiolone.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 Handa SK. Principles of pesticide chemistry. Agrobios (India); 2012. Matolcsy G, Nádasy M, Andriska V. Pesticide chemistry. Elsevier;
	1989.
	3. J. Miyamoto and P. C. Kearney Pesticide Chemistry Human Welfare and the Environment vol. IV Pesticide Residue and Formulation
	Chemistry, Pergamon press, 1985.
	4. R. Cremlyn: Pesticides, John Wiley.
	4. R. Cleiniyii. resucides, Joini whey.
Reference Books	1. Roy N. K., Chemistry of Pesticides. CBS Publisher & Distributors P
	Ltd; 1st Ed. (2010).
	2. Nollet L.M., Rathore H.S., Handbook of pesticides: methods of
	pesticide residues analysis. CRC press; 2016.
	3. Ellerbrock R.H., Pesticide Residues: Significance, Management and
	Analysis, 2005

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO 1: teach about the pesticides and their toxicity with respect to structure and category.

CO 2: explain the preparation and property of pesticides

CO 3: investigate the pesticide residues, prevention and care

CO 4: demonstrate the extraction and analytical methods of pesticide residues

CO 5: make awareness to the public on bio-pesticides

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3

CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

Title of the	GENERAL CHEMISTRY-IV								
Course									
Paper No.	Core VII								
Category	Core	Year	II	Credits	4	Course			
		Semester	I			Code			
			V						
Instructional	Lecture	Tutorial	Lal	Practice	Total				
hours per week	4	-	-			4			
Prerequisites	General Cl	nemistry III							
Objectives of the	This course	e aims to pro	ovide	a compre	hensi	ve knowledge o	n		
course	 thermodynamic concepts on chemical processes and applied aspects. thermo chemical calculations transition elements with reference to periodic properties and group study of transition metals. the organic chemistry of ethers, aldehydes and ketones the organic chemistry of carboxylic acids 								
					•				
	isolated, clearly cyclic, revolution reactions equations) application reaction - or Zeroth law Unit II Thermody Second La randomnes reversible entropy ch	gy — Intensions and opersible and individual and significant of ideal arelation between temperature and their and pressures; determination of thermodermanics II we of thermodermanics; Carnot's and irreveranges of an	en syrrever ance ions and etweet at appliare continue of ynan acycesible idea	ystems; iso ersible pro- of heat of q, w, real gases en heat ca- e. of reactions; of on enthalph a of bond calorific va- nics-Absolu- calorific va- processes all gas and	therrocesses (q), E are sumpacitions, streeffect y of energy and the course T	nal, adiabatic, is s; First law of t work (w), intend H for reverse der isothermalies (Cp & Cv) and ard states; to of temperature reactions; Heard food and fuels emperature scale ions of first law of entropy, entropy of mixin	ypes of heats of the transfer		

Free energy and work functions - Need for free energy functions, Gibbs free energy, Helmholtz free energy - their variation with temperature, pressure and volume, criteria for spontaneity; Gibbs-Helmholtz equation – derivations and applications; Maxwell relationships, thermodynamic equations of state; Thermodynamics of mixing of ideal gases, Ellingham Diagram-application.

Third law of thermodynamics - Nernst heat theorem; Applications of third law - evaluation of absolute entropies from heat capacity measurements, exceptions to third law.

UNIT III

General Characteristics of d-block elements

Transition Elements- Electronic configuration - General periodic trend variable valency, oxidation states, stability of oxidation states, colour, magnetic properties, catalytic properties and tendency to form complexes. Comparative study of transition elements and non transition elements – comparison of II and III transition series with I transition series. Group study of Titanium, Vanadium, Chromium, Manganese, Iron, Cobalt, Nickel and Zinc groups

UNIT IV

Ethers, Thio ethers and Epoxides

Nomenclature, isomerism, general methods of preparations, reactions involving cleavage of C-O linkages, alkyl group and ethereal oxygen. Zeisel's method of estimation of methoxy group.

Reactions of epoxides with alcohols, ammonia derivatives and LiAH₄ Thioethers - nomenclature, structure, preparation, properties and uses.

Aldehydes and Ketones

Nomenclatue, structure and reactivity of aliphatic and aromatic aldehydes and ketones; general methods of preparation and physical properties. Nucleophilic addition reactions, base catalysed reactions with mechanism-Aldol, Cannizzaro's reaction, Perkin reaction, Benzoin condensation, Haloform reaction, Knoevenagel reaction. Oxidation of aldehydes. Baeyer - Villiger oxidation of ketones. Reduction: Clemmensen reduction, Wolf - Kishner reduction, Meerwein – Pondorf Verley reduction, reduction with LiAlH4 and NaBH4.

Addition reactions of unsaturated carbonyl compounds: Michael addition.

UNIT V

Carboxylic Acids: Nomenclature, structure, preparation and reactions of aliphatic and aromatic monocarboxylic acids. Physical properties, acidic nature, effect of substituent on acidic strength. HVZ reaction, Claisen ester condensation, Bouveault Blanc reduction, decarboxylation, Hunsdieckerreaction.Formic acid-reducing property.

Reactions of dicarboxylic acids, hydroxy acids and unsaturated acids.

Carboxylic acid Derivatives: Preparations of aliphatic and aromatic acid chlorides, esters, amides and anhydrides. Nucleophilic substitution reaction at the acyl carbon of acyl halide, anhydride, ester, amide. Schottan-Baumann reaction. Claisen condensation, Dieckmann and Reformatsky

reactions, Hofmann bromamide degradation and Curtius rearrangement.

Active methylene compounds: Keto – enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate

Halogen substituted acids – nomenclature; preparation by direct halogenation, iodination from unsaturated acids, alkyl malonic acids

Hydroxy acids – nomenclature; preparation from halo, amino, aldehydic and ketonic acids, ethylene glycol, aldol acetaldehyde; reactions – action of heat on α , β and γ hydroxy acids.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external

Questions related to the above topics, from various competitive examinations UPSC/JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	1. B.R. Puri and L.R. Sharma, <i>Principles of Physical Chemistry</i> , Shoban
Text	Lal Nagin Chand and Co., thirty three edition, 1992.
	2. K. L. Kapoor, <i>A Textbook of Physical chemistry</i> , (volume-2 and 3), Macmillan, India Ltd, third
	edition, 2009.
	3. P.L. Soni and Mohan Katyal, <i>Textbook of Inorganic Chemistry</i> , Sultan Chand & Sons, twentieth edition, 2006.
	4. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal
	Publishing, fourth reprint, 2003.
	5. S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic
	Chemistry, Macmillan India Ltd., third edition, 1994.
ReferenceBooks	1. Maron, S. H. and Prutton C. P. <i>Principles of Physical Chemistry</i> , 4 th ed.; The Macmillan Company: Newyork, 1972.
	2. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William
	Heinemann: London,1991.
	3. Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; Goel
	Publishing House: Meerut, 2001.
	4. Atkins, P.W. & Paula, J. <i>Physical Chemistry</i> , 10th ed.; Oxford
	University Press:New York, 2014.
	5. Huheey, J. E. Inorganic Chemistry: Principles of Structure and
	Reactivity, 4th ed; Addison Wesley Publishing Company: India,1993.
Website and	MOOC components
e-learning	https://nptel.ac.in/courses/112102255
source	Thermodynamics
	https://nptel.ac.in/courses/104101136
	Advanced transition metal chemistry

completion of the course the students should be able to

- **CO1:** explain the terms and processes in thermodynamics; discuss the various laws of thermodynamics and thermo chemical calculations.
- **CO2:** discuss the second law of thermodynamics and its application to heat engine; discuss third law and its application on heat capacity measurement.
- **CO3:** investigate the chemistry of transition elements with respect to various periodic properties and group wise discussions.
- **CO4:** discuss the fundamental organic chemistry of ethers, epoxides and carbonyl compounds including named organic reactions.
- CO5: discuss the chemistry and named reactions related to carboxylic acids and their

derivatives; discuss chemistry of active methylene compounds, halogen substituted acids and hydroxyl acids.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse		PHYSICAL CHEMISTRY PRACTICAL – I									
Paper No.	Core VII	I									
Category	Core	Year		Credits	2	Course					
		Semester	IV	D		Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total 3					
hours per week Prerequisites	General C	- homistry)			3					
Objectives of the			ovidine	o an under	stand	ding of					
course	 The course aims at providing an understanding of the laboratory experiments in order to understand the concepts of physical changes in chemistry the rates of chemical reactions colligative properties and adsorption isotherm 										
Course Outline		UNIT-I Chemical kinetics 1. Determination of rate constant of acid catalysed hydrolysis of an ester									
		(methyl acetate).									
	 Determination of order of reaction between iodide and persulphate (initial rate method). Polarimetry: Determination of rate constant of acid catalysedinversion of cane sugar 										
	Thermoch										
	4. Determinate base.	ination of h	eat of	neutralisa	tion	of a strong ac	eid by a strong				
	5. Determi	nation of he	at of l	nydration o	of co	pper sulphate.					
	UNIT II										
	Electroche	emistry – C	ondu	ctance me	asur	ements					
	6. Determi	nation of ce	ll con	stant							
	7. Determi	nation of m	olar co	onductance	e of s	strong electroly	rte				
	8. Determi	nation of di	ssocia	tion consta	nt o	f acetic acid					
	Colorimet	ry									
	9. Determi	nation of co	ncenti	ration of c	oppe	r sulphate solu	tion				
	UNIT III Colligativ	e property									

	10. Determination of molecular weight of an organic compound by Rast method using naphthalene or diphenyl as solvent
	Adsorption
	11. Construction of Freundlich isotherm for the adsorption of aceticacid on activated charcoal
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Reference Books	1. Sindhu, P.S. Practicals in Physical Chemistry, Macmillan India: New Delhi, 2005.
	2. Khosla, B. D.Garg, V. C.; Gulati, A.; <i>Senior Practical Physical Chemistry</i> , R.Chand: New Delhi, 2011.
	3. Gupta, Renu, <i>Practical Physical Chemistry</i> , 1 st Ed.; New Age International: New Delhi, 2017.
Website and	https://www.vlab.co.in/broad-area-chemical-sciences
e-learning source	

On completion of the course the students should be able to

CO1: describe the principles and methodology for the practical work

CO2: explain the procedure, data and methodology for the practical work.

CO3: apply the principles of electrochemistry, kinetics for carrying out the practical work.

CO4: demonstrate laboratory skills for safe handling of the equipment and chemicals

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS								
Course									
Paper No.		(Discipline							
Category	Skill	Year	II	Credits	2	Course			
	Enhanc	Semester	IV			Code			
	ement								
	Course								
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	2	-	-			2			
Prerequisites	General C	hemistry							
Objectives of the	The course	e aims at pro	ovidin	g an overa	ll vi	ew of the			
course	 operation and troubleshooting of chemical instruments fundamentals of analytical techniques and its application in the characterization of compounds theory of chromatographic separation and theory of thermo / electro analytical techniques 								
	• sto	oichiometry	and th	ie related o	conc	entration terms			
Course Outline	S.I Units, Milli equi and Volu Stoichiome Sampling, Accuracy, Methods of Standard I	valence, Mo me, ppm, etry Calcula evaluation Precision, of Expression Deviation, Co	betwolality, ppb. tions of a Min procefficial	een Mass, Molarity, Density a analytical imization ecision: Ment of Var	and No and data of Iean iatio	l Weight. Mo rmality, Percer Specific Grav , Errors – T Errors. Signi , Median, Avo	les, Millimoles, ntage by Weight vity of Liquids. ypes of Errors, ificant Figures. erage Deviation, Limits, Q- test, pration plots.		
	(choice of designs. T backgroun of remova	source, mo echniques of d correction	nochrof ator , sources for	omator, de nization as ces of chen the quant	tectond s	or, choice of fl ample introduce interferences a	instrumentation ame and Burner etion; Method of and their method of trace level of		

UNIT III

UV-Visible and IR Spectroscopy

Origin of spectra, interaction of radiation with matter, fundamental lawsof spetroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles, instrumentation (choice of source, monochromator and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Infrared Spectroscopy: Basic principles of instrumentation (choice of source, monochromator& detector) for single and double beam instrument; sampling techniques.

UNIT IV

Thermal and Electro-analytical Methods of Analysis

TGA and DTA- Principle, Instrumentation, methods of obtaining Thermograms, factors affecting TGA/DTA, Thermal analysis of silver nitrate, calcium oxalate and calcium acetate

DSC- Principle, Instrumentation and applications.

Electroanalytical methods: polarography - principle, instrumentation and applications. Derivative polarography- Cyclic Voltammetry - principle.

UNIT V

Separation and purification techniques

Classification, principle, Factors affecting - Solvent Extraction - Liquid - Liquid Extraction,

Chromatography: Column, TLC, Paper, Gas, HPLC and Electrophoresis, Principle, Classification, Choice of Adsorbents, Solvents, Preparation of Column, Elution Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms and Rf value.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills.

 Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by G.H. Jeffery and others) 5th Ed., The English Language Book Society of Longman. R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand, New Delhi, 2007 Skoog, Holler and Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th Indian Reprint (2017). R. Speyer, Thermal Analysis of Materials, CRC Press, 1993. R.A. Day and A.L. Underwood, Quantitative Analysis, 6thedn., Prentice Hall of India Private Ltd., New Delhi, 1993
 D. A. Skoog, D. M. West and F. J. Holler, Analytical Chemistry: An Introduction, 5thedn., Saunders college publishing, Philadelphia, 1998. Dash U N, Analytical Chemistry; Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 2011. Christian, Gary D; Analytical Chemistry, 6th Ed., John Wiley & Sons, New York, 2004. Mikes, O. &Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, sixth edition Pearson Education, 2000
 http://www.epa.gov/rpdweb00/docs/marlap/402-b-04-001b-14-final.pdf http://eric.ed.gov/?id=EJ386287 http://www.sjsu.edu/faculty/watkins/diamag.htm http://www.britannica.com/EBchecked/topic/108875/separation-and-purification http://www.chemistry.co.nz/stoichiometry.htm

completion of the course the students should be able to

CO1: apply error analysis in the calibration and use of analytical instruments, explain theory, instrumentation and application of flame photometry and Atomic Absorption spectrometry

CO2: explain theory, instrumentation and application of UV visible and Infrared spectroscopy.

CO3: able to discuss instrumentation, theory and applications of thermal and electrochemical techniques

CO4: explain the use of chromatographic techniques in the separation and identification of mixtures

CO5: explain preparation of solutions, stoichiometric calculations

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	FORENSIC SCIENCE								
Course	OP C VIII	D.	a •	ne \					
Paper No.		Discipline S	-	,	1-				
Category	Skill	Year	II	Credits	2	Course			
	Enhance	Semester	IV			Code			
	ment								
	Course								
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	2	-	-			2			
Prerequisites	General Cl								
Objectives of the	This course	e aims at giv	ving a	n overall vi	iew c	of			
course	• crime of	detection thr	on through analytical instruments						
	• forgery	and its dete	ection						
	• medica	l aspects inv	volved	1					
		1							
Course Outline	UNIT I								
	Poisons								
					-	-	s in the living and		
		•	•	•			nces. Heavy metal		
	contaminat	tion (Hg, Pb	, Cd)	of seafood	s - u	se of neutron	activation analysis		
	in detecting	g arsenic in	huma	n hair. Tre	atme	nt in cases of	poisoning – use of		
	antidotes fo	or common j	poisor	ıs.					
	Unit-II								
	Crime De	44							
			lurina	manufactu	ro o	f matahas and	l firoveorles (as in		
		-	_				l fireworks (as in		
			_	-		·-	ticks and RDX) -		
					ty m	easures for v	VIP-composition		
	of bullets a	and detecting	g pow	der burns.					
	UNIT-III								
	Forgery a	nd Counter	·feitin	g					
	Documents	s - different	t type	s of forge	d sig	gnatures - sir	mulated and traced		
				_	_		liberately modified		
	_	_				_	letters – checking		
			-	-			sis using AAS to		
				•			•		
	detect counterfeit coins – detection of gold purity in 22 carat ornaments – detecting gold plated jewels -authenticity of diamond.								
	detecting g	ora praica je	- W C13	-aumonnoll	y 01	aiaiiioilu.			
	UNIT-IV								
	Tracks an	d Traces							
			nall tr	acks and r	olice	e dogs - foot	prints - costing of		
	11.000 une		11			2000 1000	r-mis cosmis or		

foot prints -residue prints, walking pattern or tyre marks – miscellaneous traces and tracks – glass fracture - tool marks - paints - fibres - Analysis of biological substances - blood, semen, saliva, urine and hair - Cranial analysis (head and teeth) DNA Finger printing for tissue identification in dismembered bodies - detecting steroid consumption in athletes and racehorses.

UNIT-V

Medical Aspects

Aids - causes and prevention - misuse of scheduled drugs - burns and their treatment by plastic surgery. Metabolite analysis using mass spectrum - Gas chromatography-Arson -natural fires and arson - burning characteristics and chemistry of combustible materials -nature of combustion. Ballistics - classification - internal and terminal ballistics - small arms -laboratory examination of barrel washing and detection of powder residue by chemical tests.

Recommended Text

- 1. SA Iqbal, M Liviu, Textbook of forensic chemistry, Discovery publishing house private limited, 2011.
- 2. Kelly M. Elkins, Introduction to Forensic Chemistry, CRC Press, Taylor & Francis Group, 2019.
- 3. Javed I. Khan, Thomas J. Kennedy, Donnell R. Christian, Jr., Basic principles of Forensic chemistry, Humana Press, first edition, 2012.
- 4. Bapuly AK, (2006) Forensic Science Its application in crime investigation, Paras Medical Publisher, Hyderabad.
- 5. Sharma B.R., (2006) Scientific Criminal Investigation, Universal Law Publishing Co. Pvt. Ltd, New Delhi.

ReferenceBooks

- 1. Richard Saferst in and Criminalistics-An Introduction to Forensic Science (College Version), Sopfestein, Printice hall, eighth edition, 2003
- 2. Suzanne Bell, Forensic Chemistry, Pearson, second international edition, 2014.
- 3. Jay Siegel, Forensic chemistry: Fundamentals and applications, Wiley-Blackwell, first edition, 2015.
- 4. Max M. Houck & Jay A. Segal, (2006) Fundamentals of Forensic Science, Elsevier Academic press.
- 5. Henry C. Lee, Timothy Palmbach, Marilyn T. Miller, (2006) Henry Lee's Crime Scene Book Elsevier Academic press.

Website and e-learning source

- 1. http://www.library.ucsb.edu/ist/03-spring/internet.html
- 2. http://www.wonder howto.com/topic/forensic-science/

completion of the course the students should be able to

- CO 1: learn about the Poisons types and classification of poisons in the living and the dead organisms and also get information about Postmortem.
- CO 2: get awareness on Human bombs, possible explosives (gelatin sticks and RDX) and metal defector devices and other security measures for VVIP composition of bullets and detecting powder burns
- CO 3: detect the forgery documents, different types of forged signatures
- CO4: have an idea about how to tracks and trace using police dogs, foot prints identification and gain the knowledge in analyzing biological substances blood, semen, saliva, urine and hair DNA Finger printing for tissue identification in dismembered bodies
- CO 5: get the awareness on Aids causes and prevention and also have an exposure on handling fire explodes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse	ORGANIC CHEMISTRY - I									
Paper No.	Core IX									
Category	Core	Year	III	Credits	4	Course				
		Semester	V			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites		hemistry I,II				•				
Objectives of the		e aims to pr				_				
Course Outline	• st co • pr co • pr • pr • pr pr • pr • pr • pr • pr	reparation are paration are paration. Nonversions; al isomerism: Isomerism:	sm in sof ethat properties of ethat properties	chirals and hane and be perties of mes rent dyes, perties of hiophene perties of and isoquidant and soquidant and series, meso stration- med rules. Restrict carbon thane and mpounds - preparationes; reacted characted in	food five six inoli awh anti tty, truct thoo buta	ometric isomerale natic and aliphologous and accommendate membered heterone. orse Projection isomerism, E/S specific rotatures - molecular of racemisad S notations ms – allenes arane.	ditives serocycles like erocycles like and ation; resolution-for one and two			
	Aromatic nitro compounds Nomenclature, preparation – nitration, from diazonium salts, physical properties; reactions - reduction of nitrobenzene in different medium, Electrophilic substitution reactions, TNT.									

Amines: Aliphatic amines

Nomenclature, isomerism, preparation – Hofmanns' degradation reaction, Gabriel's phthalimide synthesis, Curtius Schmidt rearrangement.

Physical properties, reactions – alkylation, acylation, carbylaminereaction, Mannich reaction,

oxidation, basicity of amines.

UNIT III

Chemistry of Nitrogen Compounds – II

Aromatic amines — Nomenclature, preparation — from nitro compounds, Hofmann's method; Schmidt reaction, properties - basic nature, ortho effect; reactions — alkylation, acylation, carbylamine reaction, reaction with nitrous acid, aldehydes, oxidation, Electrophilic substitution reactions, diazotization and coupling reactions; sulphanilic acid - zwitter ion formation.

Distinction between primary, secondary and tertiary amines - aliphatic and aromatic

Diazonium compounds

Diazomethane, Benzene diazonium chloride - preparations and synthetic applications.

Dyes

Theory of colour and constitution; classification based onstructure and application; preparation –Martius yellow, aniline yellow, methyl orange, alizarin, indigo, malachite green.

Industry oriented content

Dyes Industry, Food colour and additives

UNIT IV

Heterocyclic compounds

Nomenclature and classification. General characteristics - aromatic character and reactivity.

Five-membered heterocyclic compounds

Pyrrole – preparation - from succinimide, Paal Knorr synthesis; reactions – reduction, basic character, acidic character, electrophilic substitution reactions, ring opening.

Furan – preparation from mucic acid and pentosan; reactions – hydrogenation, reaction with oxygen, Diels Alder reactions, formation of thiophene and pyrrole; Electrophilic substitution reaction.

Thiophene synthesis - from acetylene; reactions -reduction; oxidation;

electrophilic substitution reactions.
UNIT V
Six-membered heterocyclic compounds
Pyridine – synthesis - from acetylene, Physical properties; reactions - basic character, oxidation, reduction, electrophilic substitution reactions; nucleophilic substitution- uses Condensed ring systems
Quinoline – preparation - Skraup synthesis and Friedlander's synthesis; reactions – basic nature, reduction, oxidation; electrophilic substitutions; nucleophilic substitutions – Chichibabin reaction
Isoquinoline – preparation by the Bischler – Napieralski reaction, reduction, oxidation; electrophilic substitution.
Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)
Knowledge, Problem solving, Analytical ability, Professional
Competency, Professional Communication and Transferable skills.
1.M.K. Jain, S.C.Sharma, Modern Organic Chemistry, Vishal
Publishing, fourth reprint, 2009.
2.S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic
Chemistry, Macmillan India Ltd., third edition, 2009.
3. ArunBahl and B.S. Bahl, Advanced organic chemistry, New Delhi,
S.Chand& CompanyPvt. Ltd., Multicolour edition, 2012.
4.P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry,
Sultan Chand & Sons, New Delhi, twenty ninth edition, 2007.
5.C.N.Pillai, Text Book of Organic Chemistry, Universities Press
(India) Private Ltd., 2009.
1.R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson
Education, Asia, sixth edition, 2012.
2. T.W.Graham Solomons, Organic Chemistry, John Wiley & Sons, eleventh edition, 2012.

	3. A. Carey Francis, Organic Chemistry, Tata McGraw-Hill Education
	Pvt. Ltd., New Delhi, seventh edition,2009.
	4. I. L. Finar, Organic Chemistry, Vol. (1& 2), England, Wesley
	Longman Ltd, sixth edition, 2006.
	5. J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, Fifth
	Edition, 2010.
Website and	1. www.epgpathshala.nic.in
e-learning	2. www.nptel.ac.in
sources	3. http://swayam.gov.in
	4. Virtual Textbook of Organic Chemistry
1	

On completion of the course the students should be able to

CO1: assign RS notations to chirals and EZ notations to olefins and explain conformations of ethane and butane.

CO2: explain preparation and properties of aromatic and aliphatic nitro compounds and amines

CO3: explain colour and constitution of dyes and food additives

CO4: discuss preparation and properties of five membered heterocycles like pyrrole, furan and thiophene

CO5: discuss preparation and properties of six membered heterocycles like pyridine, quinoline and isoquinoline

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the		Π	NOR	GANIC C	CHEN	MISTRY -I	
Course							
Paper No.	Core X	T				I	
Category	Core	Year		Credits	4	Course	
		Semester	V			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	-	-			4	
Prerequisites		hemistry I,					
Objectives of the course	• no co	nd Jahn Tello reparation ar anthanoids a	, is and character theory er efformed produced and and and and and and and and and an	somerism welate comp welate, magneti ect operties of ctinoids	and plexe c pro meta	s operties, stabilit	f coordination ty of complexes
Course Outline	IUPAC 1 coordination Werner's of geometry ordination 4 &6. Chelates — application of DMG water usin Role of multiple To-ordination and tetral spectroche complexes crystal fie water as a spectra of	on compound coordination and magnetic compounds types of lights of chelater and oxine if g EDTA, more than the chelater attention Chemical series and compounds the compound of the compound of the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are factors in the effect on the chemical series are chemica	ds. theoretic prowith ands ands ands ands ands ands ands ands	f coording by a effect operties by co-ordinate forming clausitative vimetric at on indicate ving system. I field split, Crystal culation ocing the cradii, late ydration), ahn — Tel	tive are Paultion in helater and analysors. tting field f CFS magnitice of interpler effects	tomic number - ing's theory - umber es – stability of quantitative and sis –estimation haemoglobin and of energy level stabilization SE in octahedra itude of crystenergies, heats oretation of mag ffect. Stability	alysis–application ofhardness of

UNIT III

Organometallic compounds

Metal Carbonyls

Mono and polynuclear carbonyls, General methods of preparation of carbonyls – general properties of binary carbonyls – bonding in carbonyls – structure and bonding in carbonyls of Ni, Fe, Cr, Co, Mn, Ru and Os. EAN rule as applied to metal carbonyls.

Ferrocene-Methods of preparation, physical and chemical properties

UNIT IV

Inner transition elements (Lanthanoids and Actinoids)

General characteristics of f-block elements - Comparative account of lanthanoids and actinoids - Occurrence, Oxidation states, Magnetic properties, Colour and spectra - Lanthanoids and Actinoids, Separation by ion-Exchange and Solvent extraction methods - Lanthanoids contraction-Chemistry of thorium and Uranium-Occurrence, Ores, Extraction, properties and uses - Preparation, Properties and uses of ceric ammonium sulphate, thorium dioxide and uranyl acetate.

UNIT V

Inorganic polymers

General properties – classification of inorganic polymers based on element in the backbone (Si, S, B and P) - preparation and properties of silicones (polydimethylsiloxane and polymethylhydrosiloxane) phosphorous based polymer (polyphosphazines and polyphophonitrilic chloride), sulphur based polymer (polysulfide and polymeric sulphur nitride), boron based polymers (borazine polymers) – industrial applications of inorganic polymers.

Extended
Professional
Component (is a
part of internal
component only,
Not to be included
in the external
examination
question paper)
Skills acquired

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 31th Edition, Milestone Publishers & Distributors, Delhi.
- 2. Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009),

Website and e-learning source	 1.www.epgpathshala.nic.in 2. www.nptel.ac.in 3. http:/swayam.gov.in
Reference Books	 Advanced Inorganic Chemistry, 18th Edition, S. Chand & Co., New Delhi Lee J D, (1991), Concise Inorganic Chemistry, 4th Edition, ELBS William Heinemann, London. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemistry, S. Chand and Company Ltd. A. K. De, Text book of Inorganic Chemistry, Wiley East Ltd, seventh edition, 1992. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed., S.Chand and Company, New Delhi. Gopalan R, (2009) Inorganic Chemistry for Undergraduates, Ist Edition, University Press (India) Private Limited, Hyderabad Sivasankar B, (2013) Inorganic Chemistry. Ist Edition, Pearson, Chennai Alan G. Sharp (1992), Inorganic Chemistry, 3rd Edition, Addition-Wesley, England Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014.

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: explain isomerism, Werner's Theory and stability of chelate complexes

CO2: discuss crystal field theory, magnetic properties and spectral properties of complexes.

CO3: explain preparation and properties of metal carbonyls

CO4: give a comparative account of the characteristics of lanthanoids and actinoids

CO5:explain properties and uses of inorganic polymers of silicon, sulphur, boron and phosphorous

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0
Course Contribution to Pos					

Level of Correlation between PSO's and CO's

Title of the]	PHY	SICAL C	HEM	IISTRY -I	
Course							
Paper No.	Core XI						
Category	Core	Year	III	Credits	4	Course	
		Semester	V			Code	
Instructional	Lecture	Tutorial	La	b Practice		Total	
hours per week	4	1	-			5	
Prerequisites	General C	hemistry I,II	,III a	ınd IV			
Objectives of the	The course	aims at pro	vidi	ng an over	all vi	ew of	
Course Outline	ar • ch • ac • cc • ph UNIT I Thermody	nd partial monemical kine disorption, he olloids and repote the motochemistry and work and work was and work	olar potics a comog macro ry, fl	properties and differe geneous and prodecules uorescence	nt tyjd het and	pes of chemica erogeneous can phosphorescen	talysis nce functions, Gibbs
	pressure and a derivation of the derivations of the derivation of	nd volume, ons and ap of state; The pplication. olar propertion	criter plica ermo	ria for spot tions; Mandynamics chemical ntial with	ontan xwell of m pote temp	eity; Gibbs-Holl relationships ixing of ideal ential, Gibbs berature and properties.	with temperature, elmholtz equation, thermodynamic gases, Ellingham Duhem equation, ressure, chemical gules equation.

UNIT II

Chemical Kinetics

Rate of reaction - Average and instantaneous rates, factors influencing rate of reaction - molecularity of a reaction - rate equation - order of reaction. order and molecularity of simple and complex reactions, Rate laws - Rate constants – derivation of rate constants and characteristics for zero, first order, second and third order (equal initial concentration)

 Derivation of time for half change with examples. Methods of determination of order of Volumetry, manometry and polarimetry.

Effect of temperature on reaction rate – temperature coefficient - concept of activation energy - Arrhenius equation. Theories of reaction rates – Collision theory – derivation of rate constant of bimolecular gaseous reaction – Failure of collision theory. Lindemann's theory of unimolecular reaction. Theory of absolute reaction rates – Derivation of rate constant for a bimolecular reaction – significance of entropy and free energy of activation. Comparison of collision theory and ARRT.

Complex reactions – reversible and parallel reactions (no derivation and only examples)

- kinetics of consecutive reactions - steady state approximation.

UNIT III

Adsorption – Chemical and physical adsorption and their general characteristics- distinction between them Different types of isotherms – Freundlich and Langmuir. Adsorption isotherms and their limitations – BET theory, kinetics of enzyme catalysed reaction – Michaelis- Menten and Briggs- Haldene equation – Lineweaver- Burk plot – inhibition – reversible – competitive, noncompetitive and uncompetitive (no derivation of rate equations)

Catalysis – general characteristics of catalytic reactions, auto catalysis, promoters, negative catalysis, poisoning of a catalyst – theories of homogenous and heterogeneous catalysis – Kinetics of Acid – base and enzyme catalysis. Heterogenous catalysis

UNIT IV

Colloids and Surface Chemistry

Colloids: Types of Colloids, Characteristics Colloids (Lyophilic and Lyophobic sols),

Preparation of Sols- Dispersion methods, aggregation methods, Properties of Sols- Optical properties, Electrical properties - Electrical double layer, Electro Kinetic properties- Electro-osmosis, Electrophoresis,

Coagulation or precipitation, Stability of sols, associated colloids, Emulsions, Gels-preparation of Gels, Applications of colloids

	Macromolecules: Molecular weight of Macromolecules-Number average molecular weight- average molecular weight, Determination of Molecular weight of molecules
	UNIT V Photochemistry
	Laws of photo chemistry – Lambert – Beer, Grotthus – Draper and Stark – Einstein. Quantum efficiency. Photochemical reactions – rate law – Kinetics of H ₂ -Cl ₂ , H ₂ -Br ₂ and H ₂ -I ₂ reactions, comparison between thermal and photochemical reactions.
	Fluorescence – applications including fluorimetry – sensitised fluorescence, phosphorescence – applications - chemiluminescence and photosensitisation – examples Chemistry of Vision – 11 cis retinal – vitamin A as a precursor - colour perception of vision
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, Shoban Lal Nagin Chand and Co., forty eighth edition, 2021. Peter Atkins, and Julio de Paula, James Keeler, Physical Chemistry, Oxford University press, International eleventh edition, 2018. ArunBahl, B.S. Bahl, G. D. Tuli Essentials of physical chemistry, 28th edition 2019, S, Chand & Co. S. K. Dogra and S. Dogra, Physical Chemistry through Problems: New Age International, fourth edition, 1996. J. Rajaram and J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO., 1986.
Reference Books	 J. Rajaram and J.C. Kuriacose, Chemical Thermodynamics, Pearson, 1st edition, 2013. Keith J. Laidler, Chemical kinetics, third edition, Pearson, 2003. P. W. Atkins, and Julio de Paula, Physical Chemistry, Oxford University press, seventh edition, 2002.
	4. K. L. Kapoor, A Textbook of Physical Chemistry, Macmillan

	India Ltd, third edition, 2009.5. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Shobanlal Nagin Chand and Co. Jalendhar, forty first, edition, 2001
Website and	1. https://nptel.ac.in
e-learning source	2. https://swayam.gov.in
	3. www.epgpathshala.nic.in

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: explain Gibbs and Helmholtz free energy functions, partial molar quantities and Ellinghams

CO2: apply the concepts of chemical kinetics to predict the rate of the reaction and order of the reaction, demonstrate the effect of temperature on reaction rate, and the significance of free energy and entropy of activation.

CO3: compare chemical and physical adsorption, Freundlich and Langmuir adsorption isotherms, and differentiate between homogenous and heterogeneous catalysis.

CO4: demonstrate the types and characteristics of colloids, preparation of sols and emulsions, and determine the molecular weights of macromolecules.

CO5: utilize the concepts of photochemistry in fluorescence, phosphorescence, chemiluminescence and color perception of vision.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse		I	NDUSTI	RIAL	СНЕ	EMISTRY	
Paper No.	EC VI						
Category	Elective	Year Semester	III Cro	edits	3	Course Code	
Instructional	Lecture	Tutorial	Lab Pi	actic	<u> </u>	Total	
hours per week	4	_	-			4	
Prerequisites	General Cl	nemistry I,II,	III and	V		1	
Objectives of the	This cours	e is designed	l to provi	de kn	owled	lge on	
course	premaproapp	cessing	cosmetics sugar, pa abrasives	iper, o	emer	nt and leather an	nd food ustrial products
Course Outline						resources in	
	classification calorific value Liquid functions petrol-octa Gaseous fungas, carbur	on; analysis alue-determinels: Petroletin internal ne number, contested water gas: LPG-contested, composition idea)	of coal- nation, ca um - cl combust cetane nu es over se gas - prep ompositio on, advan , ingree	prox rboni naract ion e mber. olid ar aratic n, ac ntages	imate sation eristic ingine and liquins - u dvanta, app	analysis and to of coal. es; Gasoline es, antiknock uid fuels; water uses. ages, applicati	ion; gobar gas- ellants – rocket
	Hair care:		pes, ingr	edien	ts; co	nditioners-types	s, ingredients.

animal origin-amber gries, civetone and musk; synthetic-classification-esters-amylsalicylate alcohols-citronellol; terpeneols-gereniol and nerol; ketones-muskone, coumarin; aldehydes-vanilin.

Soaps and Detergents

Soaps-properties, manufacture of soap-batch process; types-transparent soap, toilet soap, powder soap and liquid soap – ingredients.

Detergents-definition, properties-cleansing action; soapless detergentsanionic, cationic and non-ionic (general idea only); uses of detergents as surfactants. Biodegradability of soaps and detergents.

UNIT III

Sugar Industry

Manufacture from sugar cane; recovery of sugar from molasses; testing and estimation of sugar.

Food Preservation and processing

Food spoilage – causes; Food preservation - methods – high temperature, low temperature, drying, radiation; Food additives – preservatives, flavours, colours, anti-oxidants, sweetening agents; hazards of using food additives; Food standards – Agmark and Codex alimentarius.

UNIT IV Abrasives

Definition, characteristics, types-natural and synthetic; natural abrasives – diamond, corundum, emery, garnet, quartz – composition, uses; synthetic abrasives – carborundum, aluminium carbide, boron carbide, boron nitride, synthetic graphite – composition and uses.

Leather Industry

Structure and composition of skin, hide; Manufacture of leather – pretanning process – curing, liming, beating, pickling; methods of tanning-vegetable, chrome – one bath, two bath process; finishing.

Paper Industry

Manufacture of pulp - mechanical, chemical processes; sulphate pulp, rag pulp; manufacture of paper- beating, refining, filling, sizing, colouring, calendaring; cardboard.

UNIT V

Lubricants Definition, classification-liquid, semi-solid, solid and synthetic; properties-viscosity index, flash point, cloud point, pour point, aniline point and drop point; greases-properties, types; cutting fluids,

	selection of lubricants.
	Cement Industry
	Cement – types, raw materials; manufacture-wet process, constituent of cement, setting of cement; properties of cement-quality, setting time, soundness, strength; mortar, concrete, RCC; curing and decay of concrete.
	Intellectual Property Rights Introduction to Intellectual Property Rights — Patents - Factors for patentability - Novelty, Non obviousness, Industrial applications - Patent offices in India: Trademark - Types of trademarks- Certification marks, logos, brand names, signatures, symbols and service marks
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Sharma, B.K. <i>Industrial Chemistry</i> , 9 th ed.; Goel Publishing House:
Text	Meerut, 1998.
	2. Wilkinson, J.B.E. Moore, R.J. <i>Harry's Cosmeticology</i> , 7 th ed.; Chemical Publishers: New York, 1982.
	3. Alex V. Ramani, Food Chemistry, MJP publishers: Chennai, 2009.
	 Jayashree Ghosh, Applied Chemsitry, S. Chand: New Delhi, 2006. Srilakshmi, B. Food Science, 4th ed.; New Age International Publication, 2005.
Reference Books	1. Jain, P.C.; Jain, M. Engineering Chemistry, 16th ed.; Dhanapet Rai: Delhi, 1992
	2. George Howard, <i>Principles and Practice of Perfumes and Cosmetics</i> , Stanley Therones, Cheltenham: UK, 1987.
	3. Thankamma Jacob, Foods, Drugs and Cosmetics - A Consumer Guide, Macmillan: London, 1997.
	4. ShankuntalaManay, N.; Shadaksharaswamy, M. Food Facts and Principles, 3 rd ed.; New Age Publication, 2008.
	 Neeraj Pandey, KhushdeepDharni, <i>Intellectual Property Rights</i>, PHI Learning, 2014.

|--|

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: summarize the properties of fuels which include petroleum, water gas, natural gas and propellents

CO2: evaluate cosmetic products, soaps, detergents.

CO3: explain manufacture of sugar, food spoilages and food additives

CO4: explain properties of abrasives, manufacture of leather and paper

CO5: explain properties and manufacture of lubricants and cement, and intellectual property rights

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the		BIOCHEMISTRY										
Course	ECV											
Paper No.	EC V	Voor	TIT	C dita	14	C						
Category	Elective	Year	V	Credits	4	Course						
T / / 1	T	Semester		 Practice		Code Total						
Instructional	Lecture 4	Tutorial	Lab	Practice		5						
hours per week		-	-			3						
Prerequisites		nemistry - I	. منال نار	- 1-m avvil a d	~~ ~*							
Objectives of the		aims at pro										
course		•	etweei	n biochem	ıstry	and medicine,	composition of					
		ood										
		-	_		ino a	acids, peptides,	enzyme,					
	vi	tamins and p	roteir	ıs								
	• bi	ological fund	etions	of protein	ıs, en	nzymes, vitamin	ns and hormones					
	• bi	ochemistry o	of nuc	leic acids	and 1	lipids						
	• m	etabolism of	lipid	S		•						
Course Outline	UNIT I		1									
	Blood - Co Hemophilis Maintenand UNIT II Peptides a Amino ac essential; S ion and iso Peptides — solution an terminal an	Logic of Living Organisms Relationship of Biochemistry and Medicine Blood - Composition of Blood, Blood Coagulation – Mechanism. Hemophilia and Sickle Cell Anaemia Maintenance of pH of Blood – Bicarbonate Buffer, Acidosis, Alkalosis. UNIT II Peptides and Proteins Amino acids – nomenclature, classification – essential and Nonessential; Synthesis - Gabriel Phthalimide, Strecker; properties – zwitter ion and isoelectric point, electrophoresis and reactions. Peptides – peptide bond – nomenclature – synthesis of simple peptides – solution and solid phase. Determination of structure of peptides, N-terminal analysis – Sanger's & Edmann method; C terminal analysis - Enzymic method.										
	properties oxidation, of proteins Metabolism outline); un UNIT III Enzymes a	Proteins – classification based on composition, functions and structure; properties and reactions – colloidal nature, coagulation, hydrolysis, oxidation, denaturation, renaturation; colour tests for proteins; structure of proteins – primary, secondary, tertiary and quaternary. Metabolism of Amino acids – general aspects of metabolism (a brief outline); urea cycle. UNIT III Enzymes and Vitamins Nomenclature and classification, characteristics, factors influencing										
							Lock and key					

hypothesis, Koshland's induced fit model.

1	
	Proenzymes, antienzymes, coenzymes and isoenzymes; allosteric enzyme
	regulation.
	Vitamins as coenzymes - functions of TPP, lipoic acid, NAD, NADP,
	FMN, FAD, pyridoxal phosphate, CoA, folic acid, biotin,
	cyanocobalamin.
	UNIT IV
	Amino acids
	Components of nucleic acids - nitrogenous bases and pentose sugars,
	structure of nucleosides and nucleotides, DNA- structure & functions;
	RNA -types- structure - functions; biosynthesis of proteins
	Hormones
	Adrenalin and thyroxine — chemistry, structure and functions (No
	structure elucidation).
İ	UNIT V
	Lipids
	Occurrence, biological significance of fats, classification of lipids.
	Simple lipids – Oils and fats, chemical composition, properties, reactions
	hydrolysis, hydrogenation, trans-esterification, saponification, rancidity;
	analysis of oils and fats - saponification number, iodine number, acid
	value, R.M. value. Distinction between animal and vegetable fats.
	Compound lipids – Lipoproteins - VLDL, LDL, HDL, chylomicrons –
	biological significance.
	Cholesterol – occurrence, structure, test, physiological activity.
	Metabolism of lipids: β -oxidation of fatty acids.
D . 1 1	
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
nom uns course	Competency, Frotessional Communication and Transferable skills.

Recommended	1. Bahl, B. S.; Bhal, A. Advanced Organic Chemistry, 3 rd ed.; S. Chand:									
Text	New Delhi, 2003.									
	2. Jain, M.K.; Sharma, S.C. <i>Modern Organic Chemistry</i> , Vishal Publications: New Delhi, 2017.									
	3. Shanmugam, A. <i>Fundamentals of Biochemistry for Medical Students</i> , 6 th ed.; Published by the author, 1999.									
	4. Veerakumari, L. <i>Biochemistry</i> , 1 st ed.; MJP Publications: Chennai, 2004.									
	5. Jain, J. L.; Fundamentals of Biochemistry, 2 nd ed.; S.Chand: New Delhi, 1983.									
Reference Books	1. Conn, E. E.; Stumpf, P. K. <i>Outline of Biochemistry</i> , 5 th ed.; Wiley Eastern: New Delhi, 2002.									
	2. West, E. S.; Todd, W. R.; Mason, H. S.; Van Bruggen, J. T. <i>Text Book of Biochemistry</i> , 4 th ed.; Macmillan: New York, 1970.									
	3. Lehninger, A. L. <i>Principles of Biochemistry</i> , 2 nd ed.; CBS Publisher: Delhi, 1993.									
	4. Rastogi, S. C. <i>Biochemistry</i> , 2 nd ed.; Tata McGraw-Hill: New Delhi,									

	 2003. 5. Chatterjea, M. N.; Shinde, R. <i>Textbook of Medical Biochemistry</i>, 5th ed.; Jaypee Brothers: New Delhi, 2002.
Website and	1) http://library.med.utah.edu/NetBiochem/nucacids.html
e-learning source	2) http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/E/EnzymeKine
	tics.html
	3) https://swayam.gov.in/courses/4384-biochemistry Biochemistry
	4) https://onlinecourses.nptel.ac.in/noc19_cy07/preview
	Experimental Biochemistry

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO1: explain molecular logic of living organisms, composition of blood and blood coagulation

CO2: explain synthesis and properties of amino acids, determination of structure of peptides and proteins

CO3: explain factors influencing enzyme activity and vitamins as coenzymes

CO4: explain RNA and DNA structure and functions

CO5: explain biological significance of simple and compound lipids

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage ofCourse					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of theCourse	ORGANI	C CHEMIS	STRY	- II					
Paper No.	Core XI	II							
Category	Core	Year	III	Credits	3	Course			
		Semester	VI			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total	ı		
hours per week	1	4	-			5			
Prerequisites	Organic C	hemistry – I							
Objectives of the	This cours	e aims at pr	ovidii	ng knowledg	ge o	n			
course	 classification, isolation and discussing the properties of alkaloids and terpenes preparation and properties of saccharides biomolecules different molecular rearrangement preparation and properties of organometallic compounds 								
	Terpenes: elucidation UNIT II Carbohyd Definition configurat: Definition suitable ex Monosacc ketohexoso Glucose, l structural of Interconve ketose and	Irates and Classification of Sugar of enanticamples. Charides— coes. Fructose— (elucidation, ersions of sugar of sugar of enanticamples)	fications. Determined to the commers. Determined to the commercial	on of Carbotermination of diastereom	niine, is enth	drates with configuration epimers and L hexoses — ton, properties	examples.Relative (Fischer's Proof). and anomers with aldohexoses and es, reactions,		
	homopolys		starc			_	nportance of saccharides –		

UNIT III Molecular rearrangements: Molecular Rearrangement: Type of rearrangements, Mechanism for Benzidine, Favorskii, Clasien, Fries, Hofmann, Curtius, Schmidt and Beckmann, Pinacol-pinacolone rearrangement UNIT IV Special reagents in organic synthesis AIBN, 9BBN, BINAP/BINOL, BOC, DABCO, DCC, DIBAL, DMAP, NBS/NCS, NMP, PCC, TBHP, TEMPO Organometallic compounds in Organic Synthesis Preparation, Properties and applications: Grignard Reagents, Organo Lithium Compounds, Ziegler – Natta, Wilkinson, Metal Carbonyl, Zeiss's Salt UNIT V Green Chemistry: Principles, chemistry behind each principle and applications in chemical synthesis. Green reaction media – green solvents, green reagents and catalysts; tools used like microwave and ultra-sound in chemical synthesis. Questions related to the above topics, from various competitive Extended Professional examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours) Component (is a part of internal component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. 1 M.K.Jain, S. C.Sharma, Modern Organic Chemistry, Vishal Recommended Text Publishing, 4th reprint, 2009. 2 S.M. Mukherji, and S.P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan IndiaLtd., 3rd edition, 2009

3 Arun Bahl and B.S. Bahl, Advanced organic chemistry, New Delhi, S.Chand& Company Pvt. Ltd., Multicolour edition, 2012.

Sultan Chand & Sons, New Delhi, 29th edition, 2007.

4 P. L.Soni and H. M. Chawla, Text Book of Organic Chemistry,

	5. C Bandyopadhya; An Insight into Green Chemistry; Published on									
	2020									
Reference Books	1. R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson									
	Education, Asia,6 th edition, 2012.									
	2. T.W.Graham Solomons, Organic Chemistry, John Wiley &									
	Sons,11 th edition, 2012.									
	3. A. Carey Francis, Organic Chemistry, Tata McGraw-Hill									
	Education Pvt. Ltd., New Delhi,7 th edition,2009.									
	4. I. L. Finar, Organic Chemistry, Vol. (1& 2), England, Wesley									
	Longman Ltd, 6 th edition, 2006.									
	5. J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, 5th									
	Edition, 2010.									
Website and	1.www.epgpathshala.nic.in									
e-learning source	2.www.nptel.ac.in									
	3.http:/swayam.gov.in									
	4. Virtual Textbook of Organic Chemistry									
	5. https://vlab.amrita.edu/									

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

CO1: explain isolation and properties of alkaloids and terpenes

CO2: explain preparation and reactions of mono and disachharides

CO3: classify biomolecules and natural products based on their structure, properties, reactions and uses.

CO4: explain molecular rearrangements like benzidine, Hoffmann etc.,

CO5: preparation and properties of organolithium compounds

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse		II	NORO	GANIC CI	INORGANIC CHEMISTRY -II							
Paper No.	Core XIV											
Category	Core	Year	III	I Credits		Course						
		Semester	VI			Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total	otal					
hours per week	4		-			4						
Prerequisites	Inorganic	Chemistry	- I									
Objectives of the	The course aims to provide knowledge on											
course	• tracer	elements ar	nd the	ir role in th	ne bi	iological syste	em.					
		iron transport and storage										
	metallo enzymes, oxygen transport.											
	silicates and their applications											
	• indus	trial applica	tions (of refractor	ies,	alloys, paints	and pigments					
Course Outline	UNIT I											
	Bioinorga Essential a Zn ²⁺ in bi	UNIT I Bioinorganic Chemistry Essential and trace elements: Role of Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Fe ³⁺ , Cu ²⁺ and Zn ²⁺ in biological systems. Effect of excess intake (Toxicity) of Metal ions – trace elements - As, Cd, Pb, Hg.										
	UNIT II Metal ion	UNIT II Metal ion transport and storage										
	myoglobin	, haemog	lobin	- oxy	gen	transport	Iron-porphyrins – - Bohr effect; storage - copper					

UNIT III Metallo enzymes

Isomerase and synthetases, structure of cyanocobalamin (Vitamin B12), nature of Co-C bond; Metalloenzymes - functions of carboxy peptidase A, zinc metalloenzyme – mechanism and uses, Zn-Cu enzyme - structure and function, carbonic anhydrase, Vitamin B-12 as transferase and isomerase - Iron-sulphur proteins - 2Fe-2S – rubredoxin, 4Fe-2S – ferridoxin, Iron sulphur cluster enzymes.

Invivo and Invitro nitrogen fixation – biological functions of nitrogenase and molybdo enzymes.

UNIT IV

Silicates

Introduction – general properties of silicates, structure – types of silicates – ortho silicates(zircon), pyrosilicates (thortveitite), chain silicates(pyroxenes), ring silicates(beryl), sheet silicates(talc, mica, asbestos), silicates having three dimensional structure (feldspars, zeolites, ultramarines)

UNIT V

Industrial Applications of Inorganic Compounds

Refractories, pyrochemical, explosives. Alloys, Paints and pigments - requirements of a good paint; classification, constituents of paints – pigments, vehicles, thinners, driers, extenders, anti-knocking agents, anti-skinning agents, plasticizers, binders-application; varnishes- oils, spirit; enamels.

Nanocomposite Hydrogels: synthesis, characterization and uses.

Industrial visits and internship mandatory.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)
Skills acquired

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

1. Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 31th ed., Milestone Publishers & Distributors, Delhi.

 Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advancd Inorganic Chemistry, 18th Edition, S. Chand & Co., New Delhi Lee J D, (1991), Concise Inorganic Chemistry, 4th ed., ELBS William Heinemann, London. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemistry, Schand and Company Ltd. A. K. De, Text book of Inorganic Chemistry, Wiley East Ltd, seventh
edition, 1992 1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry,
 2nded., S.Chand and Company, New Delhi. Gopalan R, (2009) <u>Inorganic Chemistry for Undergraduates</u>, Ist Edition, University Press (India) Private Limited, Hyderabad
3. Sivasankar B, (2013) <u>Inorganic Chemistry.</u> Ist Edition, Pearson, Chennai
4. Alan G. Sharp (1992), <u>Inorganic Chemistry</u> , 3 rd Edition, Addition-Wesley, England
5. Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014.
1.www.epgpathshala.nic.in
2. www.nptel.ac.in
3. http://swayam.gov.in

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

CO1: ability to explain the importance of tracer elements on biological system.

CO2: explain the metal ion transport, Bohr effect, Na, K, Ca pump.

CO3: explain the function of Vitamin B₁₂, Zn-Cu enzyme, ferredoxin, cluster enzymes.

CO4: classification and structure of silicates.

CO5: explain the manufacture of refractories, explosives, paints and pigments

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse	PHYSICAL CHEMISTRY-II								
Paper No.	Core - X	\mathbf{V}							
Category	Core	Year	III	Credits	3	Course			
Curegory		Semester	VI			Code			
Instructional	Lecture	Tutorial		Practice		Total			
hours per week	4	1	_	Tructice		5			
Prerequisites		Themistry - I							
Objectives of the	1 -			an overal	1 view	of the			
course	The course aims at providing an overall view of the • phase diagram of one and two component systems • chemical equilibrium, • separation techniques for binary liquid mixtures. • electrical conductance and transport number. • galvanic cells, EMF and significance of electrochemical								
Course Outline	component component and bismu compound (magnesium change (stange)	of terms; t systems — t systems — th - cadmi formation m — zinc codium — p water system equilibrium ass action — application gas —equilibrium as action — application gas —equilibrium the dependence — van't H layperon equilibrium the distillation ine-water, n	water a solid lum), a with and fotassion. n therrito the rium content of a content of the conte	and sulphu liquid equi freezing nh- congruerric chlorum), solid modynamic homogene onstant and geneous edier princip equilibrium eaction is and its appurantially mice-water – escible liquid	r - sup libria- nixture uent ride - l solu deriv ous eq d degr quilibr le - v ochore olicatio	simple euteces (potassium melting poi-water systetion (gold-site euteces) water systetion (gold-site euteces) water systetion (gold-site euteces) water systetion — relatively euteces end dissociation — decompan't Hoff reaces — Clayperons	ionship between sociation of PCl ₅ ation - formation position of solid ction isotherm – on equation –		

Electrical Conductance and Transference

Arrhenius theory of electrolytic dissociation — Ostwald's dilution law, limitations of Arrhenius theory; behavior of strong electrolytes — interionic effects — Debye Huckel theory —Onsager equation (no derivation), significance of Onsager equation, Debye Falkenhageneffect, Wien effect. Ionic mobility — Discharge of ions on electrolysis (Hittorf's theoretical device), transport number —determination — Hittorf's method, moving boundary method — factors affecting transport number — determination of ionic mobility; Kohlrausch's law- applications; molar ionic conductance and viscosity (Walden's rule); applications of conductance measurements — determination of - degree of dissociation of weak electrolyte, dissociation constant of weak acidand weak base, ionic product of water, solubility and solubility product of sparingly soluble salts - conductometric titrations — acid base titrations.

UNIT V

Galvanic Cells and Applications

Galvanic cell, representation, reversible and irreversible cells, EMF and its measurement – standard cell; relationship between electrical energy and chemical energy; sign of EMF and spontaneity of a reaction, thermodynamics and EMF – calculation of ΔG , ΔH , and ΔS from EMF data; reversible electrodes, electrode potential, standard electrode potential, primary and secondary reference electrodes, Nernst equation for electrode potential and cell EMF; types of electrodes – metal/metal ion, metal amalgam/metal ion, metal, insoluble salt/anion, gas electrode, redox electrode; electrochemical series – applications of electrochemical series. Chemical cells with and without transport, concentration cells with and without transport;

Applications of EMF measurements

applications of EMF measurements – determination of activity

	coefficient of electrolytes, transport number, valency of ions, solubility product, pH using hydrogen gas electrode, quinhydrone electrode and glass electrode, potentiometric titrations – acid base titrations, redox titrations, precipitation titrations, ionic product of water and degree of hydrolysis; redox indicators - use of diphenylamine indicator in the titration of ferrous iron against dichromate. Industrial component Galvanic cells- lead storage, Ni-Cd, Li and Zn-air, Al-air batteries Fuel cells – H ₂ -O ₂ cell – efficiency of fuel cells. corrosion –mechanism, types and methods of prevention.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper) Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, ShobanLalNagin Chand and Co., forty eighth edition, 2021. Peter Atkins, and Julio de Paula, James Keeler, Physical Chemistry, Oxford University press, International eleventh edition, 2018. ArunBahl, B.S. Bahl, G. D. Tuli Essentials of physical chemistry, 28th edition 2019, S, Chand & Co. S. K. Dogra and S. Dogra, Physical Chemistry through Problems: New Age International, fourth edition, 1996. J. Rajaram and J.C. Kuriacose, Thermodynamics, ShobanLalNagin Chand and CO., 1986.
Reference Books	 K. L. Kapoor, A Textbook of Physical Chemistry, Macmillan India Ltd, third edition,2009. Gilbert. W. Castellen, Physical Chemistry, Narosa Publishing House, third edition, 1985. P. W. Atkins, and Julio de Paula, Physical Chemistry, Oxford University press, seventh edition, 2002. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, Shobanlal Nagin Chand and Co. Jalendhar, forty first, edition, 2001 D.N.Bajpai, Advanced Physical Chemistry, S.Chand&Co., 2001

Website and	https://nptel.ac.in https://swayam.gov.in							
e-learning source	https://archive.nptel.ac.in/content/storage2/courses/112108150/pdf/PPT							
	s/MTS_07_m.pdf							
	Γhermodynamics - NPTEL							
	https://www.youtube.com/watch?v=f0udxGcoztE Introduction							
	to chemical equilibrium – MIT opencourse ware							

Course Learning Outcomes (for Mapping with POs and PSOs)On

completion of the course the students should be able to

CO1: construct the phase diagram for one component and two component systems, explain the properties of freezing mixture, component with congruent melting points and solid solutions.

CO2: apply the concepts of chemical equilibrium in dissociation of PCl₅, N₂O₄ and formation of HI, NH₃, SO₃ and decomposition of calcium carbonate. Demonstrate important principles such as Le chatelier principle, van't Hoff reaction isotherm and Clausius-Clayperon equation.

CO3: Identify an appropriate distillation method for the separation of binary liquid mixtures such as azeotropic mixtures, partially miscible mixtures and immiscible liquids.

CO4: Explain the significance of Arrhenius theory, Debye-Huckel theory, Onsager equation and Kohlrausch's law in conductance.

CO5: Construct electrochemical cell with the help of electrochemical series and calculate cell EMF. Demonstrate the applications of EMF and significance of potentiometric titrations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	FUNDAMENTALS OF SPECTROSCOPY									
Course										
Paper No.	EC VII		1	1		T				
Category	Elective	Year	III	Credits	3	Course				
	Course	Semester	VI			Code				
Instructional	Lecture	Tutorial								
hours per week	4	1	-			5				
Prerequisites	General Che									
Objectives of the	This course	_	_		_					
course			nagne	tic propert	ies (of organic an	d inorganic			
		npounds								
					UV-	Visible, infra	red, Raman,			
		IR and Mass	-	-						
					UV-	-Visible, infra	red, Raman,			
	NM	IR and Mass	spect	rometry						
			of va	rious spe	ectral	techniques	in structural			
	elu	cidation								
	• sol	ving combin	ed spe	ectral prob	lems					
Course Outline	TINITE T									
	UNIT I									
	Electrical and Magnetic properties of molecules Dipole moment – polar and nonpolar molecules – polarisability of									
	1 -	_		-		-	•			
			of dij	pole mom	ents	in the study	of organic and			
	inorganic m		1		41.1	•,	. 11 11			
		-		-		-	sceptibility and			
		_	_	-		•	etermination of			
	"		usii	ig Guoy	bai	ance, terron	nagnetism, anti			
	ferromagnet									
	Microwave	-	. •	-11 (-	.: .: 1	4.4	:			
	1			,	_	rotator approa	· · · · · · · · · · · · · · · · · · ·			
					_		Stopic			
	substitution – instrumentation and applications									
	UNIT II									
	Ultraviolet		_							
	Electronic	spectra o				`	* *			
	1	· ·					al fine structure			
							e – dissociation			
							evaluation of			
		energy – pr	e-diss	ociation tra	ansit	ion - σ -σ *, 1	π-π*, n-σ*, n-π*			
	transitions.									
							d to conjugated			
						nentary Probl				
	-	- principle	and ap	plications	(est	imation of Fe	3+)			
	UNIT III									

Infrared spectroscopy

Vibration spectra —diatomic molecules — harmonic oscillator and anharmonic oscillator; Vibration — rotation spectra — diatomic molecule as rigid rotator and anharmonic oscillator (Born-Oppenheimer approximation oscillator) — selection rules, vibrations of polyatomic molecules — stretching and bending vibrations — applications — determination of force constant, moment of inertia and internuclear distance — isotopic shift — application of IR spectra to simple organic and inorganic molecules — (group frequencies)

Raman Spectroscopy

Rayleigh scattering and Raman scattering of light – Raman shift – classical theory of Raman effect – quantum theory of Raman effect – Vibrational Raman spectrum – selection rules – mutual exclusion principle – instrumentation (block diagram) – applications.

UNIT IV

Nuclear magnetic resonance spectroscopy:

PMR – theory of PMR – instrumentation - number of signals – chemical shift – peak areas and proton counting – spin-spin coupling – applications. Problems related to shielding and deshielding of protons, chemical shifts of protons in hydrocarbons, and in simple monofunctional organic compounds; spin-spin splitting of neighbouring protons in vinyl and allyl systems.

UNIT V

Mass spectrometry

Principle – different kinds of ionisation – instrumentation – the mass spectrum – types of ions – determination of molecular formula-fragmentation and structural elucidation – McLafferty rearrangement; Retro Diels Alder reaction - illustrations with simple organic molecules.

Solving structure elucidation problems using multiple spectroscopic data (NMR, MS, IR and UV-Vis).

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended 1. Gopalan, R.; Subramaniam, P. S.; Rengarajan, K. Elements of Text Analytical Chemistry; S Chand: New Delhi, 2003. 2. Usharani, S. Analytical Chemistry, 1sted.; Macmillan: India, 2002. 3. Banwell, C.N.; Mc Cash, E. M. Fundamentals of Molecular Spectroscopy, 4th ed.; Tata McGraw Hill, New Delhi, 2017. 4. U.N.Dash, Analytical Chemistry Theory and Practice, Sultan Chand &Sons,2nd Ed., 2005 5. B.K.Sharma, Spectroscopy,22nd ed., Goel Publishing House, 2011. 1. Srivastava, A. K.; Jain, P. C. Chemical Analysis an Instrumental Reference Books Approach, 3rded.; S.Chand, New Delhi, 1997. 2. Robert D Braun. Introduction to Instrumental Analysis; Mc.Graw Hill: New York, 1987. 3. Skoog, D. A.; Crouch, S. R.; Holler, F.J.; West, D. M. Fundamentals of Analytical Chemistry, 9thed.; Harcourt college Publishers: USA, 2013. 4. Madan, R. L.; Tuli, G. D. Physical Chemistry, 2nded.; S.Chand: New Delhi, 2005. 5. Puri, B. R.; Sharma, L. R.; Pathania, M.S. Principles of Physical Chemistry, 43rd ed.; Vishal Publishing: Delhi, 2008. 1. http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes2004.pdf Website and 2.http://chemistry.rutgers.edu/undergrad/chem207/SymmetryGroupThe e-learning source ory.html 3. www.epgpathshala.nic.in 4. www.nptel.ac.in 5.. http:/swayam.gov.in

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

CO1: explain electrical and magnetic properties of materials and microwave spectroscopy

CO2: explain theory, instrumentation and applications of Infrared and Raman spectroscopy

CO3: apply selection rules to understand spectral transitions, explain Woodward – Fieser's rule for the calculation of wavelength maximum of conjugated dienes

CO4: explain theory, instrumentation and applications of NMR spectroscopy

CO5: explain theory, instrumentation and applications of Mass spectrometry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of theCourse	PHYSICAL CHEMISTRY PRACTICAL – II						L – II
Paper No.	Core XV	I					
Category	Core	Year	III	Credi	2	Course	
		Semester	VI	ts		Code	
Instructional	Lecture	Tutorial	Lab	Practice	<u> </u>	Total	
hours per week	-	-	3			3	
Prerequisites	Theoretica	l knowledge	on pl	hysical cl	nemis	stry	
Objectives of the		rse aims at		•			
course	1		•	•	hem	istry experime	nts
	• ha	inds on exp	erience	e in carry	ing c	out the experin	ients
Course Outline					of eı	atectic tempera	ature and
		nyl amine o			linhe	nvl system	
	_	•	•		-	ire of a salt hy	drate.
						on temperature	
	water syst		11			1	1
	1		rolyte	on misci	bility	temperature	of phenol – water
	system		•			•	•
	5. Deter	mination of	conce	ntration c	f soc	dium chloride	using phenol-
		nloride syste					
	Unit II						
	Distribution	on law					
	6. Deterr	nination of	the d	istributio	n coe	efficient of io	dine between
		on tetrachlo					
	7. Determ	ination of e	equilib	rium cons	stant	of the reaction	1
	I ₂ +	I	I ₃	-			
	8. Determi	nation of c	oncent	tration of	the	given potassiu	m iodidesolution
		bove equili			,	. 1	
	UNIT III	1					
	Electroche	emistry					
			itratio	n of hydr	ochl	oric acid agair	nst sodium
	hydroxide			•		C	
		tiometric tit nhydronde e			s ion	against potass	ium dichromate
Extended	Questions	related to th	ne abov	ve topics,	fron	n various com	petitive
Professional	`					to be solved	L
Component (is a	(To be disc	cussed durin	ng the	Tutorial 1	nours	s)	
part of internal	ľ		_			•	
component only,							
Not to be included							

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Reference Books	 Sindhu, P.S. Practicals in Physical Chemistry, Macmillan India: New Delhi, 2005. Khosla, B. D. Garg, V. C.; Gulati, A. Senior Practical Physical Chemistry, R. Chand: New Delhi, 2011. Gupta, Renu, Practical Physical Chemistry, 1st Ed.; New Age International: New Delhi, 2017.
Website and	https://www.vlab.co.in/broad-area-chemical-sciences
e-learning source	

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO1: Describe the principles and methodology for the practical work.
CO2: Explain the procedure, data and methodology for the practical work

CO3:Apply the principles of phase rule and electrochemistry for carrying out the practical

CO4: Demonstrate laboratory skills for safe handling of the equipment and chemicals

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

Title of the	NANOSCIENCE								
Course	E C VIII								
Paper No.									
Category	Elective		VI	Credits	3	Code			
T 4 4 1	T4	Semester		D., 4:		Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	4 D : 1	1 1 ' 1	<u> </u> -	1 1 ' 4		4			
Prerequisites		wledge in phy		·					
Objectives of the		se aims at pro	•	•					
course		roduction to 1			ers a	and nanocom	posites		
	1	perties of nar							
		aracterization			•				
		thesis of car			aphe	ne, quantum	dots, self-		
		embled nanor							
	• app	olications of r	nanoma	terials as so	ensoi	rs			
Course Outline	UNIT I					·			
		on to nanosci							
							, quantum dots,		
				tes. Electro	on be	haviour in	free space, bulk		
		d nanomateria							
							proach(physical		
			•			•	nods based on		
	evaporation of a precursor-inert gas condensation, ion sputtering, spray								
	pyrolysis,			nthesis-nanolithography. Bottom-up approach					
	(chemical methods) - solvothermal synthesis, photochemical method,								
	gamma radiolysis, sonochemical synthesis, electro deposition, sol-gel								
	method, nanomaterials via chemical routes- solvents reducing agents,								
	capping agents-stabilization of nanoparticles -electrostatic and steric								
	stabilization, common stabilizers, nanoparticle growth in solution,								
	templated growth, Langmuir – Blodgett (L-B) method, reverse micelles-								
	emulsion method.								
	1	Unit II							
	Properties of materials on a nanoscale								
	Optical properties of metal and semiconductor nanomaterials- surface								
	Plasmon resonance (SPR), surface enhanced Raman spectra (SERS),								
							m. Magnetic		
							es, electronic		
	properties, Chemical properties- chemical process on the surface of								
	nanoparticles, catalysis, mechanical properties.								
	UNIT III								
	Techniques employed for characterisation of nanomaterials								
	Spectrocopy	y – UV-visi	ible, P	Spectrocopy – UV-visible, Photoelectron spectroscopy – Electron					
l .	microscopy – Cy-visible, Filotoelectron spectroscopy – Electron microscopy – Scanning Flectron Microscopy (SFM) Transmission								
	microscopy – Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning probe microscopy (SPM) –								
		Scanning	Elect	ron Micro	scop	y (SEM),	Transmission		
	Electron M	Scanningicroscopy (T	Election (EM),	ron Micro Scanning	oscop prob	y (SEM), ne microsco	Transmission py (SPM) –		
	Electron M Atomic For	 Scanning icroscopy (Tree Microscopy 	Electronic EEM), Eppy (A.	ron Micro Scanning FM), Scar	oscop prob nning	y (SEM), be microsco g Tunneling	Transmission		

	(XRD) [Principle and Block diagram only].
	UNIT IV
	Special nanomaterials
	Carbon Nano Structures Carbon nanotubes: Introduction - types - zigzag, armchair, helical, synthesis by CVD, Functionalization of Carbon Nanotubes, Reactivity of Carbon Nanotubes, Field emission, Fuel Cells, Display devices. Other Important Carbon based materials: Preparation and
	Characterization Fullerene, Graphene, properties, DLC and nanodiamonds and Applications
	Semiconductor nanoparticles: Quantum dots, synthesis – chemical synthesis using clusters, properties, porous silicon – electrochemical etching, aerogel – types – silica aerogel, resorcinol formaldehyde (RF) aerogels, zeolites – applications. Self Assembled Nanomaterials: Self Assembled Monolayers (SAMS) – inorganic, organic molecules.
	UNIT V
	Application of nanomaterials
	Biomedical Applications- drug, drug delivery, biolabelling, artificial implants, cancer treatment. Sensors – Natural nanoscale sensors, chemical sensors, biosensors, electronic noses.
	Optics & Electronics – Nanomaterials in the next generation computer technology, high definition TV, flat panel displays, quantum dot laser, single electron transistors [SET].
	Nanotechnology in agriculture – Fertilizer and pesticides nanomaterials for water purification, nanomaterials in food and packaging materials, fabric industry. Impacts of Nanotechnology – human & environmental safety risks.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	120 00 albeaused during the Tatorial Hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
nom ans course	compound, Troissional Communication and Transferable skills.

Recommended	1. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices,						
Text	Capital Publishing Co., New Delhi.						
	2. Pradeep. T, Nano: The Essentials, Understanding Nanoscience and						
	Nanotechnology; Tata McGraw-Hill Publishing Company Limited,						
	NewDelhi, 2007.						
	3. Shah. M.A.; Tokeer Ahmad, Principles of Nanoscince and						
	Nanotechnology; Narosa Publishing House, New Delhi, 2010.						
	4. Murthy. B.S; Shankar. P, Baldev Raj.; Rath. B.B. JamesMurday,						
	Textbook of Nanoscience and Nanotechnology; Universities press,						
	India Ltd ,Hyderabad. 2012.						
Reference Books	1. Sharma. P.K., <i>Understanding Nanotechnology</i> ; Vista International						
	Publishing House, Delhi. 2008.						
	2. Charles P. Poole Jr.; Frank J. Owens. <i>Introduction to</i>						
	Nanotechnology; A John Wiley & Sons, INC., Publication, 2003.						
	3. Viswanathan B., <i>Nano Materials;</i> Narosa Publishing House, New						
	Delhi, 2009.						
	4. Edited by C.N.R. Rao; Mu"ller.A; Cheetham. A.K. Nanomaterials						
	Chemistry Recent Developments and New Directions, WILEY-VCH						
	Verlag GMBH & Co.,KGaA, Darmstad.						
	5. Jing Zhong Zhang, Optical properties and spectroscopy of						
	Nanomaterials; World Scientific Publishing Pvt. Ltd., Singapore.						
Website and	1) http://www.nanotechnology.com/docs/wtd015798.pdf						
e-learning source	2) http://nccr.iitm.ac.in/Nanomaterials.pdf						

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

CO1: explain the general concepts and physical phenomena of relevance within the field of nanoscience.

CO2: describe the properties, synthesis, characteristics of nanomaterials, special nanomaterials and applications.

CO3: examine the structure, properties, applicability and characterization of nanomaterials.

CO4: analyze various synthesis procedures, characterizations and uses of carbon nanotubes, fullerene and graphene

CO5: discuss applications of nanomaterials of sensors and in optics and electronics

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

Title of the	POLYMER SCIENCE							
Course	FC VIII							
Paper No.	EC VIII	₹7	TIT	G 114	12			
Category	Elective	Year	III	Credit	3	Course		
		Semeste r	VI	S		Code		
Instructional	Lecture	Tutorial	Lab	Practice	;	Total		
hours per week	4		-			4		
Prerequisites	Knowledge	on functio	nal g	roups and	reac	tion mechanism	ns	
Objectives of the	The cour	se aims at p	rovid	ling an ov	erall	view of		
course	• cla	assification	of po	lymers, p	repai	ration of polym	ers	
	• kinetics of polymerization and characterization of polymers							
						racterize polym		
	• re	actions of p	olym	ers				
		eciality poly	•		C, PN	ИMA		
Course Outline	UNIT I	, , , , , , , , , , , , , , , , , , ,	-					
	Introducti	on						
	Difference	between	polyn	ner and	macı	romolecule –	classification -	
	synthetic	and natura	al, o	rganic a	nd	inorganic, the	rmoplastic and	
	thermosetti	ng. Plastics	, elas	tomers, fi	bres	and liquid resin	ns.	
	Technique	es of polym	eriza	tion				
					sion 1	oolymerization		
	Unit – II	ion, cinaisi	on un	a suspens	1011	porjuienzation		
		f polymeriz	zatior	1				
					ı pol	ymerisation; ic	onic, freeradical,	
					•	nerisation – rea		
		ock and graf		•	•		•	
	Character	isation of p	olym	iers				
	Appearance	e, feel and h	nardne	ess, densit	v. ef	fect of heat, sol	ubility.	
					-		gth, mechanical,	
	thermomec		and			properties of		
	viscoelastic					rr	r y	
	UNIT III							
	Molecular Weight and Properties of Polymers							
							Weight Average,	
	Molecular							
	_						ght polydispersity	
							cattering - Zimm	
	μ ΄	_				velocity an		
	-		-			chromatograpl	-	
	_	_	_				nperature-State of	
						ions, Factors	Influencing Glass	
		Temperatur				· · · · · · · · · · · · · · · · · · ·	,	
							perature, TGA /	
	_	-	Pol	ymers: (_rys1	aiiine Behavi	our, Degree of	
	Crystallinit	y						

	UNIT IV Reactions of Polymers-Hydrolysis, Acidolysis, Aminolysis, Additionand Substitution Reactions (One Example Each) Cyclisation, Cross-Linking and Reactions of Specific FunctionalGroups in the Polymer Polymer technology Processing of polymers – casting, thermoforming, moulding – extrusion, compression, blow moulding – foaming, lamination, reinforming, processing of fibres, malt, use and dry animaling.
	reinforcing – processing of fibres – melt, wet and dry spinning. UNIT V Speciality polymers Polyelectrolytes, conducting polymers, polymeric supports for solid phase synthesis, biomedical polymers, liquid crystalline polymers, electroluminescent polymers – two examples of each of these polymers. Polyethylene, PVC, PMMA, polyester; rubber – synthetic and natural, vulcanisation of rubber. Polymer Degradation
	Types of Degradation - Thermal, Mechanical, Ultra Sound, Photo Radiation and Chemical Degradation Methods.
	Rubber-Natural and Synthetic-Structure, Mechanism of Vulcanisation Biodegradable and Non-Biodegradable Polymers.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper) Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 Gowariker V.R, N.V. Viswanthan and Jayadev Sreedhar. Polymer Science. New Delhi: New Age International, 2015 Misra G.S. Introductory Polymer Chemistry. New Delhi: Wiley Eastern, 2010. Bahadur P and Sastry N V. Principles of Polymer Science. New Delhi: Narosa Publishing House, 2005 Ahluwalia, V.K. Anuradha Mishra, <i>Polymer Science A Text Book</i>, Ane Books India: New Delhi, 2008. Morrison, R. R.; Boyd, R. N.; Bhattacharjee, S. K. <i>Organic Chemistry</i>, 7th ed.; Pearson: New Delhi, 2011.

Reference Books	1. Billmeyer, F.W. Polymer Science. India: Wiley-Interscience, 2007.								
	2. Seymour, R. B.; CarraherJr.C.E. Polymer Chemistry: An								
	Introduction, Marcel Dckker								
	Inc: New York, 1981.								
	3. Sinha, R. Outlines of Polymer Technology, Prentice Hall of India:								
	New Delhi, 2000.								
	4. Joel R. Fried, <i>Polymer Science and Technology</i> , 3 rd ed.; Prentice								
	Hall of India: New Delhi, 2014.								
Website and	1. https://polymerdatabase.com								
e-learning source	2. http://amrita.vlab.co.in/?sub=2&brch=190∼=603&cnt=1								
	3.http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/polymers.								
	htm								
	4.http://nsdl.niscair.res.in/bitstream/123456789/406/2/Molecular+weigh								
	ts+of+polymers.pdf								

CO1: explain classification of polymers, elastomers, fibres and liquid resins CO2: explain addition and condensation polymerization, mechanical properties of polymers

CO3: determine the molecular weight of polymers, and explain the thermal properties of

CO4:explain reactions of polymers and polymer processing

CO5:discuss speciality polymers like PVC, PMMA, rubbers, biodegradable polymers

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of the Course		PHAI	RMACE	CUTICAL	L CI	HEMISTRY		
Paper No.	Elective	Course VIII						
Category	Elective	Year	III (Credits	3	Course		
		Semester	VI			Code		
Instructional	Lecture	Tutorial	Lab I	Practice		Total		
hours per week	4		-			4		
Prerequisites	Knowled	ge on active	chemica	al compo	unds	and biochemistry		
Objectives of the	The cour	se aims at pr	oviding	an overa	ll vie	ew of		
course	• dr	drugs design and drug metabolism						

- drugs for major diseases like cancer, diabetes and AIDS
- analgesics and antipyretic agents
- significance of clinical tests

Course Outline

UNIT I

Introduction

Important terminologies – drug, pharmacognosy, pharmacy, pharmacology, pharmacodynamics, pharmacokinetics, clinical pharmacology, pharmacotherapeutics, chemotherapy, toxicology, pharmacophore, antimetabolites, mutation, bacteria, virus, fungi, actinomycetes, vaccines, pharmacopeia, posology and therapeutic index.

Sources of drugs – dosage forms – bio availability – routes of administration –

absorption, distribution and elimination of drugs – drug metabolism – prescription terms.

Structure and pharmacological activity

Effect of – unsaturation, chain length, isomerism; groups - halogens amino, nitro, nitrite, cyano, acidic, aldehydic, keto, hydroxyl and alkyl groups.

Development of Drugs

Development of a drug – classic steps- lead compounds- comparison of traditional and modern methods of development of drugs – drug design by method of variation – disjunction and conjunction methods.

Unit II

Indian medicinal plants

Some important Indian medicinal plants – tulsi, neem, kizhanelli, mango, semparuthi, adadodai, turmeric and thoothuvalai – uses.

Common diseases and their treatment

Causes, prevention and treatment of the following diseases:

Insect borne diseases— malaria, filariasis, plague; Air borne diseases— diphtheria, whooping cough, influenza, measles, mumps, common cold, tuberculosis; Water borne diseases— cholera, typhoid, dysentery.

Digestive system – jaundice; Respiratory system – asthma; Nervous system – epilepsy.

Antibiotics

Definition – classification – structure and therapeutic uses of chloramphenicol, penicillins , structure activity relationship of chloramphenicol; therapeutic uses of ampicillin, streptomycin, erythromycin, tetracycline, rifamycin.

UNIT III

Drugs for major diseases

Cancer – common causes – chemotherapy – anti neoplastic agents – classification –adverse effects of cytotoxic agents; alkylating agents – chlorambucil; anti metabolites – methotrexate, fluouracil; Vinca alkaloids – vincristine, vinblastine.Diabetes – types –

management of diabetes – insulin ; oral hypoglycemic agents - sulphonyl ureas – chlorpropamide ; biguanides - metformin – thiazolidinediones .Cardiovascular drugs– cardio glycosides ; anti arrhythmic agents – quinidine, propranolol hydrochloride ; anti-hypertensive drugs - Aldomet, pentoliniumtartarate; vasodilator-tolazoline hydrochloride, sodium nitroprusside.AIDS – causes, symptoms and prevention – anti HIV drugs - AZT, DDC.

UNIT IV

Analgesics and antipyretic agents

Classification – action of analgesics – narcotic analgesics – morphine; synthetic analgesics – pethidine, methadone; antipyretic analgesics – salicylic acid derivatives, indolyl derivatives, p-aminophenol derivatives.

Anaesthetics

Definition, characteristics, classification - general anaesthetics – volatile anaesthetics – nitrous oxide, ethers, cyclopropane, chloroform,halothane, trichloro ethylene– storage, advantages and disadvantages; non volatileanaesthetics – thiopental sodium; local anaesthetics – requisites – advantages- esters – cocaine, benzocaine; amides – lignocaine, cinchocaine.

Blood and haemotological agents

Blood— composition, grouping — physiological functions of plasma proteins — mechanism of clotting; Coagulants — vitamin K, protamine sulphate, dry thrombin; Anti coagulants — coumarins, citric acid and heparin; antifibrinolytic agents — aminocaproic acid and tranexamic acid.

Anaemia– causes, types and control – anti anaemic drugs.

UNIT V

Clinical Chemistry

Blood tests – blood count – complete haemotogram – Hb, RBC, GTT, TC, DC, platelets, PCV, ESR; bleeding and clotting time – glucose tolerance test.

Significance of Clinical Tests

Serum electrolytes - blood Glucose - orthotoluidine method; Renal functions tests - blood urea, creatinine; liver function tests - serum proteins, albumin globulin ratio, serum bilirubin, enzymes SGOT, SGPT; lipid profile – cholesterol, triglycerides, HDL, LDL, coronaryrisk index. Urine examination – pH, tests for glucose, albumin and bile pigment.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Jayashree Ghosh, (1999), A text book of pharmaceutical chemistry,
Text	2 nd ed., S.Chand& company, New Delhi.
	2. Lakshmi S, (2004), Pharmaceutical chemistry, 3 rd ed., Sultan
	chand& sons, Delhi.
	3. Tripathi K D, (2018), Essentials of medical pharmacology, 8 th ed.,
	Jaypee brothers medical publishers (P) Limited, New Delhi.
	4. Ashutosh Kar, (2018), Medicinal chemistry, 7 th ed., New age
	international (P) Limited,
	Publishers, New Delhi.
Reference Books	Reference Books:
	1. Chatwal G R, (2013), Pharmaceutical chemistry, inorganic (vol-I)
	6 th ed ., Himalaya
	publishing house, Bombay.
	2. Chatwal G R, (1991), Pharmaceutical chemistry, organic (vol-II).,
	Himalaya publishing house, Bombay.
	3. Patrick G, (2002), Instant Notes Medicinal Chemistry, Viva Books
	Private Limited, New Delhi.
	4. Intellectual Property Rights, NeerajPandey, Khushdeep Dharni.
	Publisher: PHI Learning Pvt. Ltd., 2014 ISBN: 812034989X,
	9788120349896.
*** 1 *4 1	
Website and	1. http://www.pharmacy.umaryland.edu/faculty/amackere/courses/phar5
e-learning source	31_delete/lectures/qsar_1.pdf 2. http://www.indianmedicinalplants.info/
	3. https://www.wipo.int/about-ip/en/
Course Learning O	strong (for Monning with DOs and DCOs)On

- CO1: Define the pharmaceutical terminologies; describe the principles in pharmacological activity, drug development, clinical chemistry, hematology, therapeutic drugs and treatment of diseases; list the types of IPR and trademarks.
- CO2: Discuss the development of drugs, structural activity, disease types, physiochemical properties of therapeutic agents, significance of medicinal plants, clinical tests and factors for patentability.
- CO3: Apply the principles involved in structural activity and drug designing, functions ofhaematological agents; estimation of clinical parameters and therapeutic application of drugs for major diseases.
- CO4: explain classification of analgesics and anasthetics, and physiological functions of plasma protiens
- **CO5:** explain the significance of clinical tests like blood urea, serum proteins and coronary risk index

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

GENERIC ELECTIVE

Title of theCourse	CHEMISTRY FOR PHYSICAL SCIENCES I						
		(FOR MATE	HEM	IATICS	& PI	HYSICS STU	DENTS)
Paper No.	Generic	Elective I					
Category	Generic	Year	I (Credits	3	Course	
	Elective	Semester	I			Code	
Instructional	Lecture	Tutorial	La	b Practic	ee	Total	
hours per week	4	-				4	
Prerequisites		condary chemi		1 1 1		.1	
Objectives of the		e aims to prov		_	_		1'
course		asics of atomic					
		oncepts of the oncepts of nuc		-		us applications	S.
		nportance of c		-			
		ualitative and				2	
		uamanve and	ana	iyticai iiic	mou	·	
Course Outline	UNIT I						
	Chemic	al Bonding a	nd I	Nuclear (Chem	istry	
	Chemic	al Bonding: N	Mole	cular Or	bital	Theory-bondi	ng, antibonding
	and no	n-bonding orb	oitals	. Molecu	lar o	rbital diagram	ns for Hydrogen,
	Helium,	, Nitrogen; dis	scuss	ion of bo	nd o	der and magn	etic properties.
	Nuclea	r Chemistry:	Fu	ndamenta	al pa	articles - Is	otopes, Isobars,
	Isotone	es and Isome	rs-D	ifferences	bet	ween chemica	al reactions and
	nuclear	reactions - gr	roup	displace	ment	law. Nuclear	binding energy -
	mass d	lefect - calcı	ılatio	ons. Nuc	lear	fission and 1	nuclear fusion -
	differe	nces – Stellar	ene	rgy. App	licati	ons of radioi	sotopes - carbon
	dating,	rock dating ar	nd m	edicinal a	pplic	ations.	
	Unit II						
	Industr	ial Chemistr	y				
	Fuels: F	Fuel gases: Na	tural	gas, wat	er ga	s, semi water	gas, carbureted
	water ga	as, producer g	as, C	CNG, LPC	G and	l oil gas (manı	ufacturing
	details r	not required).	Silic	ones: Syr	nthes	is, properties a	and uses of
	silicone	S.					
	Fertilize	ers: Urea, amn	noni	um sulph	ate, p	otassium nitra	nte, NPK
	fertilize	r, superphospl	hate	triple su	nernh	iosphate	
	TOTUTIZO	r, superphospi	iiuic,	arpre su	Perpi	iospiiaie.	

UNIT III

Fundamental Concepts in Organic Chemistry

Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric- examples.

Reaction mechanisms: Types of reactions—aromaticity (Huckel's rule)

– aromatic electrophilic substitution; nitration, halogenation, FriedelCraft's alkylation and acylation. Heterocyclic compounds:
Preparation, properties of pyrrole and pyridine.

UNIT IV

Thermodynamics and Phase Equilibria

Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. Entropy and its

significance. Free energy change and its importance (no derivation).

Conditions for spontaneity in terms of entropy and Gibbs free energy.

Relationship between Gibbs free energy and entropy.

Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag).

UNIT V

Analytical Chemistry

Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques – extraction, distillation and crystallization.

Chromatography: principle and application of column, paper and thin layer chromatography.

Extended
Professional
Component (is a part of internal component only,
Not to be included

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

in the external								
examination								
question paper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional							
from this course	ompetency, Professional Communication and Transferable skills.							
Recommended	1. V.Veeraiyan, Text book of Ancillary Chemistry; High mount							
Text	publishing house, Chennai, first edition,2009.							
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya							
	Publications, Karur,2006.							
	3. S.ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and							
	Company, NewDelhi, twenty third edition, 2012.							
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan							
	Chand & sons, New Delhi, twenty ninthedition, 2007.							
Reference Books	5. P.L.Soni, Mohan Katyal, Textbook of Inorganic chemistry; Sultan Chan							
	dandCompany,New Delhi, twentieth edition, 2007.							
	6. B.R.Puri,L.R.Sharma,M.S.Pathania,TextbookPhysicalChemistry;V							
	ishalPublishingCo., New Delhi, fortyfortyseventh edition, 2018.							
	7. B.K,Sharma,IndustrialChemistry;GOELpublishinghouse,Meerut,si							
	xteenthedition, 2014.							

- CO 1: gain in-depth knowledge about the theories of chemical bonding, nuclear reactions and its applications.
- CO 2: evaluate the efficiencies and uses of various fuels and fertilizers
- CO 3: explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
- CO 4: apply various thermodynamic principles, systems and phase rule.
- CO 5: explain various methods to identify an appropriate method for the separation of chemical components

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of theCourse		CHEMISTRY FOR PHYSICAL SCIENCES II (FOR MATHEMATICS & PHYSICS STUDENTS)							
	(.	FOR MATH	EMIA	ATICS &	PΗ	IYSICS STUI	DENTS)		
Paper No.	Generic E	lective II							
Category	Generic	Year		Credits	3				
- · · · ·	Elective	Semester	II	 		Code			
Instructional	Lecture	Tutorial	La	b Practice	;	Total			
hours per week Prerequisites	Chemistry f	or physical sc	ience	-c -I		4			
Objectives of the	•	se aims at prov			lge	on the			
course		ination Chem		•	_				
	• Carboh	ydrates and A	min	o acids					
	• basics	and applicatio	ns o	f electroch	em	istry			
	• basics	and applicatio	ns o	f kinetics a	and	catalysis			
	Various	s photochemic	al p	henomeno	n				
Course Outline	Co-ordination Werner's the to [Ni(CO) Haemoglobic qualitative at Water Technology 1 to 1 t	eory - EAN rule [Ni(CN)4], [Ni(CN)4] [In and Chlor [Ind quantitative [Ind quantitativ	e - For the control of the control o	efinition of Pauling's the Co(CN)6] ³⁻ yll (elementallysis. of water, do	f toneon	erms-IUPAC ry – Postulate helation - Bio ary idea) –	Nomenclature - s - Applications blogical role of Applications in ardness of water ques-		
	Carbohyo fructose glucose a starch and A alanine, p	and sucrose. Ind fructose. I cellulose. Indicate the sucrose.	Discollection Discollection Class dipo	on, prepar cussion of ose –fructo dification - eptides usi	oj ose p	pen chain rin interconversion	ties of glucose, g structures of on. Properties of d properties of ethod. RNA and		

UNIT III

Electrochemistry

Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chrome plating – Types of cells -fuel cells-corrosion and its prevention.

UNIT IV

Kinetics and Catalysis

Order and molecularity. Integrated rate expression for I and II (2A \square Products) order reactions. Pseudo first order reaction, methods of determining order of a reaction – Half-life period – Catalysis - homogeneous and heterogeneous, catalyst used in Contact and Haber's processes. Concept of energy of activation and Arrhenius equation.

UNIT V

Photochemistry

Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen-chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)
Skills acquired

from this course

Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours)

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publishing house, Chennai, first edition, 2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
Reference Books	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, twentieth edition, 2007.
	 R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventh edition, 2018.
	3. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.
Website and e-learning source	

- CO 1: write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology
- CO 2: explain the preparation and property of carbohydrate, amino acids and nucleic acids.
- CO 3: apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.
- **CO 4:** identify the reaction rate, order for chemical reaction and explain the purpose of a catalyst.
- CO 5: outline the various type of photochemical process.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of theCourse		CHEMISTRY FOR BIOLOGICAL SCIENCES I							
		(FOR BOTA	NY A	ND ZOO	LOG	Y STUDEN	TS)		
Paper No.		Elective III		- ·	la	-	T		
Category	Generic	Year	II	Credits	3	Course			
I441	Elective	Semester	III	Practice Practice	Tot	Code			
Instructional hours per week	Lecture	Tutorial	Lab	Practice	4	aı			
Prerequisites	Higher sec	ondary chemi	stry		+				
Objectives of the		e aims at provi		nowledge	on				
course		_				. 1. 1. 1. 1. 11.	4:1		
		sics of atomic ndamentals of		ŕ		nas, nybrian	zauon and		
			_						
	• nu	clear chemistr	y and	industrial o	chemi	stry			
	• im	portance of sp	ecialit	y drugs an	d				
	• se	paration and p	urifica	tion techni	anes				
		paration and p	urrirea		ques.				
Course Outline	UNIT I	al Dandina an	J N	deer Cher		_			
	Chemic	al Bonding an	iu ivuo	ciear Chei	mstry				
	1	l Bonding: M l-bonding orbi				•	- C		
	Nitroger	; discussion of	f bond	order and	magn	etic properti	es.		
	Isotones nuclear mass de difference dating, r	Chemistry: and Isomers reactions- grou efect - calcula ces - Stellar e ock dating and	-Differ up disp ations. energy.	rences bet blacement Nuclear Applicati	ween law. I fission ons o	chemical r Nuclear bind n and nucl f radioisoto	reactions and ding energy - ear fusion -		
	Unit II								
		Chemistry					_		
	Fuels: Fue	l gases: Natur	al gas	, water ga	s, ser	nı water ga	s, carbureted		
		producer gas,	CNG,	LPG and	oil ga	as (manufac	turing details		
	not require	d).							
	Silicones: 3	Synthesis, prop	perties	and uses of	of silic	cones.			
	Fertilizers: Urea, ammonium sulphate, potassium nitrate NPK fertilizer,								
	superphosp	superphosphate, triple superphosphate.							
		ntal Concepts on: Orbital o		_	•	•	ry of CH4,		
	C2H4, C2	2H2 and C6	ίΗ6.	Polar eff	ects:	Inductive	effect and		

consequences on Ka and Kb of organic acids and bases, electromeric. mesomeric, hyper conjugation and steric-examples and explanation. Reaction mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine. UNIT IV Drugs and Speciality Chemicals Definition. structure and uses: Antibiotics viz., Penicillin, Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform and ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen compounds viz., Freon, Teflon. UNIT V: **Analytical Chemistry** Introduction qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification techniques: extraction, distillation and crystallization. Chromatography: principle and application of column, paper and thin layer chromatography. Extended Questions related to the above topics, from various competitive Professional examinations UPSC/ JAM /TNPSC others to be solved (To be discussed during the Tutorial hours) Component (is a part of internal component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended 1. V. Veeraiyan, Textbook of Ancillary Chemistry; High mount Text publishing house, Chennai, first edition, 2009. 2. S. Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006. 3. ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, twenty third edition,2012. 4. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.

Reference Books	1. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;							
	Sultan Chand and Company, New Delhi, twentieth edition, 2007.							
	2. B.K,Sharma, Industrial Chemistry; GOEL publishing house,							
	Meerut, sixteenth edition, 2014.							
	3. Jayashree gosh, Fundamental Concepts of Applied Chemistry; Sultan & Chand, Edition 2006.							

- **CO1:** state the theories of chemical bonding, nuclear reactions and its applications.
- CO 2: evaluate the efficiencies and uses of various fuels and fertilizers.
- **CO 3:** explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
- **CO 4:** demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
- **CO 5:** analyse various methods to identify an appropriate method for the separation of chemical components.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of theCourse	CHEMISTRY FOR BIOLOGICAL SCIENCES II						
			TANY	AND ZO	OL	OGY STUD	ENTS)
Paper No.		Elective IV		I		T ~	
Category	Generic	Year	II IV	Credits	3	Course	
	Elective	Semester	1	Practice		Code Total	
hours per week	Lecture 4	Tutorial	Lab	Fractice		4	
Prerequisites	+	tur for Diolo	rical (Caionasa I		I.	
		try for Biologree rse aims to pr	_				
Objectives of the course		omenclature o		_			arbohydrates.
004150		mino Acids a			_		-
		nderstand the				-	
				_		-	notochemistry
Course Outline		ination Chem	•				
	Co-ordi	nation Chemi	stry: 1	Definition	of t	erms - IUPA	C Nomenclature
	- Wern	er'stheory -	EAN	rule - l	Paul	ing's theory	- Postulates -
	Applica	tions to [N	i(CO)	4], [Ni(C	CN)4] ²⁻ ,[Co(CN)6]] ³⁻ Chelation -
	Biologic	cal role of H	Iemog	lobin and	Ch	lorophyll (ele	ementary idea) -
	Applica	tions in qualit	ative a	and quantit	ativ	e analysis.	
	Water 7	Гесhnology: I	Hardn	ess of wat	ter,	determination	n of hardness of
	water u	sing EDTA r	netho	d, zeolite	met	nod-Purificati	on techniques –
	BOD an	nd COD.					
	Unit Carboh	II ydrates					
			, prej	paration a	ınd	properties of	of glucose and
	fructose	. Discussion	of o	pen chain	rin	g structures	of glucose and
	fructose	. Glucose-fru	ctose	interconve	rsio	n. Preparation	n and properties
	of sucro	se, starch and	l cellu	lose.			
	UNIT III						
		Acids and Est Classification				•	es of alanine,
			•	. •		• •	od - Proteins-
	classific	ation – struc	ture -	Colour re	eacti	ons – Biolog	gical functions -
	nucleosi	ides -nucleoti	des –	RNA and	l Di	NA – structui	re. Essentials of
	trace me	etals in biolog	ical sy	/stem-Na,	Cu,	K, Zn, Fe, M	g.

	UNIT IV
	Electrochemistry
	Galvanic cells - Standard hydrogen electrode - calomel electrode -
	standard electrode potentials -electrochemical series. Strong and weak
	electrolytes - ionic product of water -pH, pKa, pKb. Conductometric
	titrations - pH determination by colorimetric method - buffer solutions
	and its biological applications - electroplating - Nickel and chrome
	plating – Types of cells -fuel cells-corrosion and its prevention.
	UNIT V
	Photochemistry
	Grothus - Drapper's law and Stark-Einstein's law of photochemical
	equivalence, Quantum yield - Hydrogen -chloride reaction.
	Phosphorescence, fluorescence, chemiluminescence and
	photosensitization and photosynthesis (definition with examples).
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC/ JAM /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended	1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount
Text	publishing house, Chennai, first edition, 2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya
	Publications, Karur, 2006.
	3. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand
	and Company, New Delhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan
	Chand & sons, New Delhi, twenty ninth edition, 2007.
Reference Books	1. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand
	and Company, New Delhi, twenty third edition, 2012.
	2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry;
	Sultan Chand & sons, New Delhi, twenty ninth edition, 2007.
	3. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;
	3. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry;

Sultan Chand and Company, New Delhi, twentieth edition, 2007.

- 4. B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, forty seventh edition, 2018.
- 5. B.K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to

- **CO 1:** write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology.
- **CO 2:** explain the preparation and property of carbohydrate.
- CO 3: enlighten the biological role of transition metals, amino acids and nucleic acids.
- **CO 4:** apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.
- **CO** 5: outline the various type of photochemical process.

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course					
Contribution to	3.0	3.0	3.0	3.0	3.0
PSOs					

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of theCourse	CHEMISTRY PRACTICAL FOR PHYSICAL AND								
		CHEMISTI					AND		
		BIOLOGICAL SCIENCES							
		`		•		I Year/I Semes			
			any and	Zoology	II Ye	ear/III Semeste	r)		
Paper No.		Elective V	L		г ,	T	1		
Category	Generic	Year	I/ II	Credits	1	Course			
	Elective	Semeste r	I/III			Code			
Instructional	Lecture	Tutorial	Lab P	ractice		Total			
hours per week	-	-	2			2			
Prerequisites		<u> </u>		<u> </u>					
Objectives of the	This	course aim	s to pro	vide know	ledge	on the			
course	• ba	sics of prep	paration	of solution	ıs.				
	• pr	inciples and	d practic	al experie	nce o	f volumetric an	alysis		
Course Outline	VOLUME	TRIC AN	ALYSIS	3					
	1.	. Estimatio		dium hyd	roxid	e using standard	d sodium		
	2	. Estimatio	on of hy	drochloric	acid	using standard	oxalic acid.		
	3	. Estimatio	n of fer	rous sulph	ate u	sing standard M	Iohr's salt.		
	4	. Estimatio	on of ox	alic acid u	sing	standard ferrous	sulphate.		
	5.	. Estimation sodium h	•	-	ermar	nganate using st	andard		
	6	. Estimatio	on of ma	gnesium ı	ising	EDTA.			
	7	. Estimatio	n of fer	rous ion u	sing	diphenyl amine	as indicator.		
Reference Books	V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles								
	ofPractio	cal Chemist	ry; Sult	an Chand	& soi	ns, Second edition	on, 1997.		
		3.7	• • • •		1 00				

CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.CO 2: design, carry out, record and interpret the results of volumetric titration. CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO/PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of theCourse	CHEMISTRY PRACTICAL FOR PHYSICAL AND							
	BIOLOGICAL SCIENCES							
	(For Mathematics and Physics – I year/II semester;							
		•	tany and Zoolog	-	-			
Paper No.	Generic	Elective VI	y 20010g	<u> </u>		(-1)		
Category	Generic	Year	I/ II Credits	1	Course			
	Electiv e	Semester	II/IV		Code			
Instructional	Lecture	Tutorial	Lab Practice		Total			
hours per week	-	-	2		2			
Prerequisites								
Objectives of the	This	course aims	s to provide knov	vledge	on			
course	• id	lentification	of organic functi	onal g	roups			
	different types of organic compounds with respect to their							
	properties.							
	• de	etermination	of elements in o	rganic	compounds			
	SYSTEM	ATIC ANA	LYSIS OF ORG	GANI	C COMPOUN	NDS		
	The analys	sis must be o	carried out as foll	lows:				
		(a) Functi	onal group tests	[pheno	ol, acids (mono	& di)		
		aroma	atic primary amir	ne, am	ides (mono &	di), aldehyde		
		and g	lucose].					
		(b) Detec	ction of elements	(N, S,	Halogens).			
	(c) To distinguish between aliphatic and aromatic compounds.							
	(d) To distinguish – Saturated and unsaturated compounds.							
Reference Books	V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles							
	ofPractical Chemistry; Sultan Chand & sons, Second edition, 1997.							

Course Learning Outcomes (for Mapping with POs and PSOs)On completion of the course the students should be able to
CO 1: gain an understanding of the use of standard flask and volumetric pipettes, burette.CO
2: design, carry out, record and interpret the results of volumetric titration.
CO 3: apply their skill in the analysis of water/hardness.

CO4: analyze the chemical constituents in allied chemical products

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution toPSOs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

DEPARTMENT OF

CHEMISTRY PROGRAMME

SPECIFIC OUTCOMES

On successful completion of the programme the students will be able to

- PSO1: acquire in-depth knowledge of the fundamental concepts in all disciplines of chemistry.
- PSO2: disseminate the basics of chemistry and advanced topics and analytical skillsin organic, inorganic and physical chemistry.
- PSO3: uphold ethical values in personal life, research and career.
- PSO4: demonstrate laboratory skills, analytical acumen, creatively in academics andresearch.
- PSO5: apply digital tools to collect, analyze and interpret data and presents cientificfindings.
- PSO6: gain competence to pursue higher education and career opportunities inchemistry and allied fields.
- PSO7: exhibit leadership qualities to work individually and within a team inorganizing curricular, co-curricular and extracurricular activities.
- PSO8: apply the concepts of chemistry to solve problems in the community, entrepreneurial and research pursuits.
- PSO9: exhibit competence in educational, industrial and research pursuits that contribute towards the holistic development of self and community.
- PSO10: display proactive approach towards sustainable environment through greenlaboratory practices.

Title of the	ORGANI	ORGANIC REACTION MECHANISM - I							
Course									
Paper No.	Core I								
Category	Core	Year	IV	Credits	4	Course			
		Semester	VII			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per	4	1	-			5			
week									

Basic concepts of organic chemistry **Prerequisites** To understand the feasibility and the mechanism of various organic **Objectives of** the course reactions. To comprehend the techniques in the determination of reaction mechanisms. To understand the concept of stereochemistry involved in organic compounds. To correlate and appreciate the differences involved in the various types of organic reaction mechanisms. To design feasible synthetic routes for the preparation of organic compounds. UNIT-I: Methods of Determination of Reaction Mechanism: Reaction Course Outline intermediates, The transition state, Reaction coordinate diagrams, Thermodynamic and kinetic requirements of reactions: Hammond postulate. Methods of determining mechanism: non-kinetic methods product analysis, determination of intermediates-isolation, detection, and trapping. Cross-over experiments, isotopic labelling, isotope effects and stereo chemical evidences. Kinetic methods - relation of rate and mechanism. Effect of structure on reactivity: Hammett and Taft equations. Linear free energy relationship, partial rate factor, substituent and reaction constants. Electrophilic UNIT-II: Aromatic and Aliphatic **Substitution:** Aromaticity: Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and annulenes. Aromatic electrophilic substitution: Orientation and reactivity of di- and polysubstituted phenol, nitrobenzene and halobenzene. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation; Halogen electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions. Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1- Mechanism and evidences. UNIT-III: Aromatic and Aliphatic Nucleophilic Substitution: Aromatic nucleophilic substitution: Mechanisms - S_NAr, S_N1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attacking nucleophile. Reactions: Oxygen and Sulphur-nucleophiles, Bucherer and Rosenmund reactions, von Richter, Sommelet- Hauser and Smiles rearrangements. S_N1, ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon.S_N1, S_N2, S_Ni, and S_E1 mechanism and evidences, Swain- Scott, Grunwald-Winstein relationship - Ambident nucleophiles. UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining theconfiguration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's

rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of

allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis. UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett Principle. Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to Component (is be solved a part of (To be discussed during the Tutorial hours) internal component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional Competency, from this Professional Communication and Transferable skills. course 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, Recommended John-Wiley and Sons.2001. **Text** 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015. 4. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013. 5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A Reference 1. and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007. Books 2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987. 3. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000. I. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson 5. Education Asia, 2004. 1.https://sites.google.com/site/chemistryebookscollection02/home/organic-Website and chemistry/organic e-learning

source 2. https://www.organic-chemistry.org/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong - 3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	Methods of Evaluation							
	Continuous Internal Assessment Test							
Internal	Assignments	25 Marks						
Evaluation	Seminars	25 IVIAIRS						
	Attendance and Class Participation							
External Evaluation	End Semester Examination	75 Marks						
	Total	100 Marks						
	Methods of Assessment							
Recall (K1)	Simple definitions, MCQ, Recall steps, Co	oncept definitions.						
Understand/ Comprehend (K2)	MCQ, True/False, Short essays, Concept overview.	explanations, short summary or						
Application	Suggest idea/concept with examples, sug	gest formulae, solve problems,						
(K3)	Observe, Explain.							
Analyze (K4)	Problem-solving questions, finish a Differentiate between various ideas, Map	- · ·						
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pros and cons.							
Create (K6)	Check knowledge in specific or offbeat story or Presentations.	Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations.						

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUCT	TURE AND	BON	DING IN	INC	DRGANIC CO	OMPOUNDS		
Course									
Paper No.	Core II	T		T =: ==		Ι ~			
Category	Core	Year	IV	Credits	4	Course			
		Semester	VII			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	4	1	-			5			
Prerequisites		icepts of In					1 1		
Objectives of the		nine the str	uctura	ii properti	es oi	main group	compounds and		
course	clusters.								
	To gain	fundamenta	ıl kno	wledge o	n the	e structural a	aspects of ionic		
	crystals.								
						roscopic techn			
	_					e defects in io	onic crystals.		
		te the struct							
Course Outline					-	-	d clusters: VB		
							ms (Bent's rule)		
	on the ge	ometry of th	ne mo	lecules; St	ructu	re of silicates	- applications of		
	Paulings	rule of elec	troval	ence - ison	morp	hous replacen	nents in silicates		
	- ortho,	meta and p	yro si	ilicates –	one o	limensional, t	wo dimensional		
	and three	e-dimension	al sili	cates. Stri	uctur	e of silicones	, Structural and		
	bonding	features of l	B-N, \$	S-N and P-	-N co	ompounds; Po	ly acids – types,		
	examples	and struct	ures:	Borane cl	uster	Structural fe	eatures of closo,		
	1 -		-				metalloboranes;		
	1			-	-		ter; main group		
		zintl ions a			01	oorane erasi	ier, mam group		
					: Ion	ic crystals: Pa	acking of ions in		
							n crystal lattice,		
							metry operations		
							and space group;		
							nde equation -		
	Kapustins	ski equation	, Mad	elung cons	stant.				
	UNIT-II	I: Solid stat	te che	mistry – l	II: St	ructural featur	res of the crystal		
	1 -						and anti-fluorite,		
		-				•	Spinels -normal		
		• •	_			-	Growth methods:		
			tion (hydrotherr	nal,	sol-gel metho	ods) – principles		
	and exam	-	•	1.1 4		1 . 4 37	1:00 4:		
		_				•	-ray diffraction		
	_						- Principle and OS files, Phase		
			_				on; Systematic		
							ue – principle,		
						-	y – difference		
						_	-		
	1 22000000	Crittin t	between optical and electron microscopy, theory, principle,						

	instrumentation, sampling methods and applications of SEM and TEM.
•	UNIT-V: Band theory and defects in solids
	Band theory – features and its application of conductors, insulators and
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in
	crystals – point defects (Schottky, Frenkel, metal excess and metal
	, · · · · · · · · · · · · · · · · · · ·
	deficient) and their effect on the electrical and optical property, laser
	and phosphors; Linear defects and its effects due to dislocations.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included in the external	
examination	
question paper)	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGAN	IC CHEMI	STRV	V PRACT	TCA					
Course	ORGAN	ic Chelvii	SIK.	IIKACI	ICA	L				
Paper No.	Core III									
Category	Core	Year	IV	Credits 4		Course				
Cutegory	Corc	Semester	VII	Creates	•	Code				
Instructional	Lecture	Tutorial	Lab Practice			Total				
hours per week	-	1	4	Tructice	5					
Prerequisites	Basic cor	icents of or								
Objectives of the	Basic concepts of organic chemistry To understand the concept of separation, qualitative analysis and									
course			· · · · · · · · · · · · · · · · · · ·							
	1	preparation of organic compounds. To develop analytical skill in the handling of chemical reagents for								
	separation	n of binary a	and ter	mary orga	nic n	nixtures.	_			
	1 *	•					stematically and			
		them suital		0		1	J			
	To constr	ruct suitable	e expe	erimental	setup	for the orga	anic preparations			
	involving	two stages.								
	_		-	purificatio	n an	nd drying tec	chniques for the			
		d processing								
Course Outline		Separation								
		o componen								
		ee compone		tures.						
	UNIT-II:	Estimation	s:							
	-) 1	Catingatian a	£ D1		4:)				
	a) Estimation of Phenol (bromination)									
	b) Estimation of Aniline (bromination)c) Estimation of Ethyl methyl ketone (iodimetry)									
	1 '	Estimation of Estimation of the Control of the Cont	-			ie (lodiffictry)				
	/	Estimation of Estimation of the Control of the Cont		`	,	imetry)				
	1 '				•	ups (reduction	1)			
		Estimation of			_	• '	-)			
	· · · · · ·	Estimation o		`		• /				
	i) 1	Estimation o	of Ace	tyl group i	in est	ter (alkalimetr	: y)			
	j) Estimation of Hydroxyl group (acetylation)									
	k) Estimation of Amino group (acetylation)									
	UNIT-III: Two stage preparations: a) p-Bromoacetanilide from aniline b) p-Nitroaniline from acetanilide c) 1,3,5-Tribromobenzene from aniline d) Acetyl salicyclic acid from methyl salicylate									
	e) Benzilic acid from benzoin									
	f) <i>m</i> -Nitroaniline from nitrobenzene g) <i>m</i> -Nitrobenzoic acid from methyl benzoate									
	· ·									
Extended	Questions related to the above topics, from various competitive									
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others									
Component (is a	to be solved (To be discussed during the Tutorial hours)									
part of internal	(10 be di	scussed duri	ng the	e i utorial l	nours	S)				

component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	PHARM	ACEUTIC	AL C	HEMIST	RY		
Paper No.	Elective 1	[
Category	Elective	Year	IV	Credits	4	Course	
, amaga ,		Semester	VII			Code	
Instructional	Lecture	Tutorial		Practice	ı	Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	owledge on	drug	s and dose	es		
Objectives of the						harmaceutical	l chemistry.
course				_	_	tions of vario	=
				_			the consequences
	of various		10 111	io w the m	-poru	arroe as werr	and compequences
		_	on the	various an	alvsi	s and technique	ues.
		_			•	structural activ	
Course Outline							ysical properties
	of drug 1	nolecule:	physic	cal proper	ties.	Refractive in	dex- Definition,
							ecific & molar
		-	-				& polychromatic
			•	_			tation examples,
		-	•	•			ant & Induced
							determination.
							on, Definition,
				• •			flow, Kinematic,
						•	wtonian system,
		•				-	w, Dilatent flow. Newtonian and
		tonian syste		SCICCHOII	OI V	isconicier for	Newtonian and
				tion anal	veie.	nrincinle a	nd applications,
							and limitations,
	Scintillati		iters:		_		ntroduction to
		maceuticals		•		of various	
						ticals as	
	_			_			emical Properties
	and drug	action. Ph	iysico	chemical	pro	perties of dru	ugs (a) Partition
	coefficier	nt, (b) solub	ility (d	c) surface	activ	ity, (d) degree	of ionization.
		_	_	-		-	: Introduction to
	_	_		_			 Definition of
							pharmacopoeias
				_	_	nomenclati	
		ation of		- 1			a dosage form,
			_	_	•		act development.
			_	-		-	ivery system –
		n of Comm					ion and control,
	-	istration of					nenclature, routes a dosage form,
		tion of dosa			nouu	, 11000 101	a dosage lulil,
			_		dr	ugs: Introduc	ction, procedure
		_				_	ounds, molecular
	10110 W C U	in drug de	51 <u>5</u> 11,	ine resear	VII 10	i icaa compo	Julius, illoiceulai

modification of lead compounds. Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, inductive effect, isoterism, bioisosterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory,4.3 Quantitative structure relationship Development of QSAR, (QSAR): drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables. UNIT-V: Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry least square fit, solution to simultaneous equations, interpolation, extrapolation, smoothing, numerical differentiation data integrations. Questions related to the above topics, from various competitive Extended examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Professional to be solved Component (is a part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended Physical Chemistry- Bahl and Tuli. Text Book of Physical Pharmaceutics, IInd edition, Vallabh **Text** Prakashan-. C.V.S. Subramanyam. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R. 3. Chatwal, Himalaya Publishing house. 4. Instrumental method of Analysis: Hubert H, Willard, 7th edition. 5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S. Chand & company Ltd. Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultan chand & Sons. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993. Reference Books 1. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate prakashan., 2 nd edition, New age international (P) limited, New Delhi. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick J. Sinko, Lippincott. William and Wilkins. 4. Cooper and Gunn's Tutorial Pharmacy, 6th edition by S.J. Carter, CBS Publisher Ltd. Ansels pharmaceutical Dosage forms and Drug Delivery System by 5. Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.

Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5: To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	NANO M	IATERIAL	SAN	D NANO	TEC	CHNOLOGY				
Course										
Paper No.	Elective 1									
Category	Elective	Year	IV	Credits	4	Course				
		Semester	VII			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites		Basic knowledge of crystallography and material science								
Objectives of the						als and nano te				
course	To unders	To understand the various types of nano materials and their properties.								
			appl	lications	of s	ynthetically i	mportant nano			
	materials.									
	1		acteris	stics of var	rious	nano materials	s synthesized by			
	new techr			C .1	. 11	1	1			
C 0 11		•		•		y used new nar				
Course Outline	UNIT-I:						notechnologies,			
							3D. Synthesis-			
						-	ers. Features of			
			_			_	ues of synthesis			
	of nano	materials,	Tools	s of the	na	noscience. A	pplications of			
	nanomate	rials and tec	chnolo	ogies.						
	UNIT-II:	Bonding a	and st	ructure of	the	nanomaterials,	Predicting the			
	Type of	Bonding	in	a Substa	ince	crystal struc	cture. Metallic			
	nanoparti	cles, Surfac	es of	Materials,	Nan	oparticle Size	and Properties.			
	_					=	ondensation, arc			
	I -	=				=	othermal-CVD-			
	_			_		=	pressure CVD.			
		e assisted a	_				F			
							ries relevant to			
			_	_			al properties of			
		rials, adh		-		-	properties of			
		*				•	des: silica, iron			
		alumina - s					,			
							d Resistivity,			
							etic properties,			
	electronic	1 1					of magnetic			
							Ge, Si, GaAs,			
			-				p and n –type			
				-			Hall voltage -			
	interpreta			ge carri		• •	plications of			
		uctors: p-n galvanic ce	-	on as tran	1818101	is and reculier	rs, photovoltaic			
				nanocompo	osites	Application of	f nanoparticles in			
							synthesis, and			
							polymer-matrix			
			-				M and AFM -			
		instrumenta				•				
	principie,	mon unicilla	auon (та аррис	anons	,				

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	(10 be discussed during the ratorial nodis)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
TCAL	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Treference Books	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html .
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
8	•
Course Learning	Dutcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	ELECTE	ROCHEMI	STRY	7			
Title of the							
Course Paper No.	Elective 1	T .					
Category	Elective		IV	Credits	4	Course	
Category	Liective	Semester	VII	Credits	-	Code	
Instructional	Lecture			Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	wledge of e	lectro	chemistry	,	1	
Objectives of the	To under	stand the b	ehavi	or of elec	troly	tes in terms	of conductance,
course	ionic atmo	osphere, inte	eractio	ons.			
	To famili	arize the st	ructui	e of the	electr	rical double la	ayer of different
	models.						
	To compa	re electrode	s betw	veen curre	nt de	ensity and over	r potential.
						ical reactions.	
					ver v	oltages and it	ts applications in
G 0 11		lytical tech			• •,		
Course Outline	1			•			loff factor and its
	1	_					l behavior. Ionic efficient-concept
				-		•	etrolytes, activity
							tivity coefficient
		nt and ion-		•			n. Debye-Huckel
				of Debye	-Huc	kel limiting la	aw at appreciable
	concentra			rolytes r			1 1
							tment of strong
							and limitations.
	formation		aun	iosphere.	1011	association	and triple ion
			-elect	trolyte in	terfa	ce: Interfacia	al phenomena -
	1			-			non-polarizable
				•	-		equation electro
	capillary	curves.	Elec	tro-kinetic	e p	henomena	electro-osmosis,
							ls, colloidal and
	* *	•			•		z -Perrin, Guoy-
	_					_	r. Zeta potential
						and limitation	
	1				•		ctions: Behavior illibrium. Anodic
							of ions. Nernst
			-			_	Model of three
	1 -	-		-			emical reactions:
		•	-				olmer equation-
			_			•	ent density and
				_			symmetry factor
						d Tafel plots.	
				_			System: Rates of
	reaction.	-	reacti etermi			-	n for a multi-step olarization and
	reaction.	Nate 0	C(C(1111)	ming ste	ep,	ciecuode p	oiai izatioli alla

depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I³⁻, Fe²⁺, and dissolution of Fe to Fe²⁺. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams. UNIT-V: Concentration Polarization, Batteries and Fuel cells: Modes of Transport of electro active species - Diffusion, migration and hydrodynamic modes. Role of supporting electrolytes. Polarographyprinciple and applications. Principle of square wave polarography. Cyclic voltammetry- anodic and cathodic stripping voltammetry and differential pulse voltammetry. Sodium and lithium-ion batteries and redox flow batteries. Mechanism of charge storage: conversion and alloying. Capacitors- mechanism of energy storage, charging at constant current and constant voltage. Energy production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high temperature fuel cells. Extended Questions related to the above topics, from various competitive **Professional** examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, Recommended 4thedition, Chapman & Hall/CRC, 2014. **Text** 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 5. 2004. Reference Books J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New 3. York, 2010. 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977. K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.

Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	MOLEC	ULAR SPE	CTR	OSCOPY	7				
Paper No.	Elective	II							
Category	Elective	Year	IV	Credits	4	Course			
		Semester	VII	0104105	-	Code			
Instructional	Lecture	Tutorial		Practice		Total			
hours per week	4	1	-			5			
Prerequisites	Basic kn	owledge of	specti	oscopy		1			
Objectives of the					on a	nd vibrations	on the spectra of		
course	the polyatomic molecules.								
	To study	the principl	e of R	aman spe	ctros	copy, ESR sp	ectroscopy, EPR		
	spectrosc	opy and frag	gment	ation patte	erns i	n Mass spectre	oscopy.		
	To highli	ght the sign	ifican	ce of Fran	ck-C	ondon princip	le to interpret the		
	selection	rule, intensi	ty and	l types of	electi	onic transition	ns.		
						-	terms of splitting		
	_		ns us	ing correl	lation	techniques	such as COSY,		
		R, NOESY.	4	.1 .1	4	. C 1 1	1:664		
		echniques.	ructur	ai eiucida	uion	of molecules	s using different		
Course Outline			and]	Raman S	nectr	oscony. Rota	ational spectra of		
Course Outline							otational spectral		
							Classical theory		
		_				_	ability ellipsoids,		
			-	-		-			
							Raman spectra of		
		•		•	-		nti-Stokes lines.		
		-	•			•	s, rule of mutual		
				structure-G) an	d S branches	, Polarization of		
		eattered pho		C 4		X7:1 4:	- C1 1		
	UNIT-II						of molecules, ergy expression,		
							their symmetry,		
		_					spectral lines,		
			-			-	ppic substitution.		
							etra of diatomic		
							rn-Oppenheimer		
							es – symmetry		
						-	uence of rotation		
							Q, R branches,		
	molecule		uicuia	r vioratio	ons c	or imear and	symmetric top		
			nic	spectrose	conv	Electronic	Spectroscopy:		
						molecules,			
		-					$\pi \rightarrow \pi^*, n \rightarrow \pi^*$		
	transition	s and their	select	ion rules.	Phot	oelectron Spe	ectroscopy: Basic		
						simple m			
							ction, population		
		, properties	s of	iaser radi	atior	n, examples	of simple laser		
	systems.								

UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions -AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR - COSY, NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples.

UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in gvalue, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. C. N. Banwell and E. M. McCash, *Fundamentals of Molecular Spectroscopy*, 4th Ed., Tata McGraw Hill, New Delhi, 2000.
- 2. R. M. Silverstein and F. X. Webster, *Spectroscopic Identification of Organic Compounds*, 6th Ed., John Wiley & Sons, New York,

	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
	Society, 1987.
	4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
	Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988.
	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
	Philadelphia, 1992.
Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Wahaita and	
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	3.0	3.0	3.0	5.0	5.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	ORGANIC	REACTION M	IECH.	ANISM-II			
Paper No.	Core IV						
Category	Core	Year	IV	Credits	4	Course	
		Semester	VIII	1		Code	
Instructional	Lecture	Tutorial	1	Practice	-	Total	
hours per	4	1	-			5	
week							
Prerequisites	Basic know	ledge of organic	chen	nistry			
Objectives of	To understa	nd the concept	of ar	omaticity in	benze	enoid, non-be	enzenoid,
the course	heterocyclic	and annulene co	ompou	nds.			
	To understa	and the mecha	nism	involved in	vario	ous types of	organic
		th evidences.					
		nd the application			-	_	
		the reactivity be		1		1	
		nthetic routes for					
Course		mination and l					
Outline		mechanisms. Sy					
	double bond	: Hoffmann and	l Saytz	eff rules. Re	activi	ty: Effect of s	substrate,
	attacking b	bases, leaving	grou	o and med	lium.	Stereochem	istry of
	eliminations	in acyclic and	l cycli	c systems, p	yroly	tic eliminatio	on. Long
	lived and s	hort-lived radic	als –	Production of	of rad	licals by ther	rmal and
	photochemic	cal reactions, De	etection	n and stabilit	y of r	adicals, chara	cteristics
	of free ra	dical reactions	and	free radica	al, r€	eactions of	radicals;
	polymerizati			ogenations,			stitutions,
	* *	nts. Reactivity:		•			· ·
		the attacking rac		•		, aromane se	aostrates,
		Oxidation and				Machaniam	g. Direct
		nsfer, hydride					
		nination, oxid				-	reactions.
		of oxidation rea				1 0	
		rricyanide, mer		, .		• 1	
	1	lioxide, osmium					
	_	, alcohols, halid				-	
	C-C bonds	- cleavage of do	ouble	bonds, oxida	tive d	ecarboxylatio	n, allylic
	oxidation,	oxidation by	chron	nium trioxic	le-pyr	idine, DMS	O-Oxalyl
	chloride (Sw	vern oxidation) a	and Co	rey-Kim oxid	dation	, dimethyl sul	lphoxide-
		l carbodiimide	`	,			
		Wolff-Kishner,					
	_		-		-	n-Steven's r	
	_	us hydrogenatio	•	droboration	with	cyclic systen	ns, MPV
		ult-Blanc reducti			, 1	1 0 .	
		Rearrangement					
	_	colone and sem	-		_		
		stry, Wagner-M		•		-	
	Venkataram	an, Benzilic acid	d and V	Wolff rearran	geme	nts. Rearrange	ements to
	electron defi	cient nitrogen:	Hofma	nn, Curtius,	Schmi	idt, Lossen, B	eckmann

and abnormal Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen, Cope, oxy-Cope Benzidine rearrangements.

UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbonhetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, of Grignard reagents, Wittig reaction, Prins Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates –Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.

UNIT-V: Reagents and Modern **Synthetic Reactions:** Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH₃CN), meta-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu₃SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac)₂), TiCl₃, NaIO₄, Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction.

Extended
Professional
Component (is a part of internal component only, Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommende	1 I M - 1 - 1 M C - 4 1 - 1 O C
d Text	1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed.,
	John-Wiley and Sons. 2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry,
	Holt, Rinehart and Winston Inc., 1959.
	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New
	Age International Publishers, 2015.
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
	Chemistry, 7 th edn., Pearson Education, 2010.
Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill
Books	International Editionn, 1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
	Rinehart and Winston Inc., 1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-
	Wiley, 2010.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organ
e-learning	<u>ic-chemistry/organic</u>
source	2. https://www.organic-chemistry.org/

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

 $3-Strong,\,2-Medium,\,1-Low$

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTR	Y-I							
Course											
Paper No.	Core V			T							
Category	Core	Year	IV	Credits	4	Course					
T	T 4	Semester		D 4:		Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total 5					
hours per week	Pasis say	1 	-	ah amai atuu		3					
Prerequisites Objectives of the	Basic concepts of physical chemistry To recall the fundamentals of thermodynamics and the composition of										
course	partial molar quantities.										
course				and statist	ical a	pproach of th	e functions				
							Sermi-Dirac and				
	Bose-Ein	_		01 1110	21 11 011	Bonzinan, 1					
	To corre	late the th	neories	of react	ion 1	rates for the	e evaluation of				
	thermody	namic parai	neters								
	To study	the mechan	ism an	d kinetics	of rea	ections.					
Course Outline				=			lar properties-				
	Chemical	potential,	Gibb	's- Duhe	em e	quation-binar	y and ternary				
	systems.	Determinati	on of	partial mo	lar qu	antities. Ther	modynamics of				
	real gase	es - Fugaci	ty- de	eterminatio	n of	fugacity by	graphical and				
	equation	of state m	ethods	-depender	ice o	f temperature	e, pressure and				
	composit	ion. Thermo	odynar	nics of ide	eal an	d non-ideal b	oinary mixtures,				
	Duhem	- Margulus	equa	tion appl	icatio	ns of ideal	and non-ideal				
	mixtures.	_	_			fficients-stand					
	determina	ation-vapou		•		eezing point					
							n of statistical				
		namics co					mathematical				
	probabili	ties-distribu	tion c	of disting	uishal	ole and non	-distinguishable				
	_					_	es. Maxwell -				
							comparison and				
	1						onal, vibrational				
		-					diatomic and				
	1 -	_		•			rms of partition cal approach to				
		ynamic pro	-	•			nergy, entropy,				
		Gibb's					sidual entropy,				
	1 2 /						eat capacity of				
	1 -						leat capacity of				
		nstein and D	_		•						
	UNIT-II	I: Irreversi	ble Th	ermodyn	amics	: Theories of	conservation of				
					-	•	heat, matter and				
							ory-validity and				
							ro kinetic and				
				-Application	on of	irreversible t	hermodynamics				
		cal systems		logotio====	Tl	aniag of mass	etions-effect of				
							reaction rates,				
	_					•	en hypothesis-				
	1 Ommored	uiai itatli	0115 -	-Linaciliali	allC	ı Cili istialist	n hypothesis-				

	molecular beams, collision cross sections, effectiveness of collisions,
	Potential energy surfaces. Transition state theory-evaluation of
	thermodynamic parameters of activation-applications of ARRT to
	reactions between atoms and molecules, time and true order-kinetic
	parameter evaluation. Factors determine the reaction rates in solution -
	primary salt effect and secondary salt effect, Homogeneous catalysis-
	acid- base catalysis-mechanism of acid base catalyzed reactions-
	Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of
	complex reactions, reversible reactions, consecutive reactions, parallel
	reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂
	- Cl ₂ & H ₂ - Br ₂ reactions (Thermal and Photochemical reactions) -
	Rice Herzfeld mechanism. Study of fast reactions-relaxation methods-
	temperature and pressure jump methods electric and magnetic field
	jump methods -stopped flow flash photolysis methods and pulse
	radiolysis. Kinetics of polymerization-free radical, cationic, anionic
Extended	polymerization - Polycondensation.
Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	(10 be discussed during the Tutorial nours)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of
Text	Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986.
	2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th
	edition, W.A. BenjaminPublishers, California, 1972.
	3. M.C. Gupta, Statistical Thermodynamics, New Age International,
	Pvt. Ltd., New Delhi, 1995.
	4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -
	2013.
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of
	chemical transformation,M acmillan India Ltd, Reprint - 2011.
Reference Books	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
	11 / / / / / / / / / / / / / / / / / /
	2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
	2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990.
	Publishing, Pvt. Ltd., New Delhi, 1990.
	Publishing, Pvt. Ltd., New Delhi, 1990. 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry,
	Publishing, Pvt. Ltd., New Delhi, 1990. 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974
	 Publishing, Pvt. Ltd., New Delhi, 1990. 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996. 5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and e-learning source	 Publishing, Pvt. Ltd., New Delhi, 1990. 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996.

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	INORGA	NIC CHE	MIST	RY PRAC	CTIC	AL			
Course									
Paper No.	Core VI								
Category	Core	Year	IV	Credits	4	Course			
		Semester	VIII			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	_	- 1 4 5							
Prerequisites	Basic principles of gravimetric and qualitative analysis								
Objectives of the					_		n analytical tool		
course		antitative es					•		
	To recall	the principl	e and t	heory in p	repar	ing standard s	solutions.		
	To train t	he students	for in	proving th	neir s	kill in estima	ting the amount		
		urately pro					\mathcal{E}		
	To estima	ite metal io	ns, pre	sent in the	give	n solution ac	curately without		
	using inst	ruments.					-		
	To detern	nine the amo	ount of	ions, pres	ent ir	ı a binary mix	ture accurately.		
Course Outline							mixture of four		
		_	o com	mon cation	ns an	d two rare car	tions. Cations to		
	be tested.								
	Group-I		'l and F						
	Group-II			Cu, Bi an					
	Group-III			Zr, V, Cr,	Fe, T	i and U.			
	Group-IV		-	and Mn.					
	Group-V		Ba and	Sr.					
	Group-V			. 1		.			
		_	on of	metal cor	nplex	xes: Preparati	on of inorganic		
	complexe		1. :	(T)	11.	-4-			
	_	tion of trist		11 \	-				
		ation of pota							
		ition of tetra ition of Reii			<i>)</i> suiț	mate			
					D chl	oridedihydrat	e		
	_					liaquachroma			
	_	ation of sodi				-	(111)		
		ation of hex							
		: Complex							
						nd calcium.			
				_		control, mask	ing and		
		king agents.			•	•	_		
				and lead	in a n	nixture (pH co	ontrol).		
			_		-	ence of iron.			
	5. Determ	ination of n	ickel i	n the prese	ence o	of iron.			
Extended	Questions	related to t	he abo	ve topics,	from	various comp	petitive		
Professional	examinat	ons UPSC					TNPSC others		
Component (is a	to be solv	ed							
part of internal	(To be dis	scussed duri	ing the	Tutorial h	ours))			
component only,									
Not to be included									

in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
	3rded., The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i> ; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental <i>Inorganic Chemistry</i> ; Cambridge
	University Press, 1954.

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5: To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	MEDICI	NAL CHE	MIST	RY					
Paper No.	Elective 1	III							
Category	Elective	Year	IV	Credits	4	Course			
8 v		Semester	VIII	-		Code			
Instructional	Lecture	Tutorial		Practice		Total			
hours per week	4	1	_	1140000		5			
Prerequisites	•	owledge of	 medici	inal chemi	istrv				
Objectives of the						elonment of r	harmaceutical		
course	To study the chemistry behind the development of pharmaceutical materials.								
course		nowledge o	n mecl	nanism and	1 actio	on of drugs.			
	_	_				sage of drugs.			
						~ ~	and treatment		
	of diabete					and the upon			
		fy and apply	the ac	tion of va	rious	antibiotics			
Course Outline						troduction, tar	gets. Agonist		
Source Summe						eptor types, The			
	- recep		action,			ergism, Drug	_		
		nemical fact	-	_	•	•	5 10212001100,		
						rgets of antib	piotics action.		
						mechanism of a			
	penicllins					application o			
	_	orin.Curren	-				r pememins,		
							assification of		
							tiology, types,		
						classification a			
			• 1	_	-	ilorothiazide, A			
							assification of		
		• •		_		ypertension, et			
		_	-			classification a			
			• 1	_		ılorothiazide, A			
				•					
	Introducti		s, And anism			Anti-inflammanation, classi	fication and		
		*				profen, Diclofer			
			-		-	dine. Medicinal	-		
						diabetics, Drug			
						nism of action,			
		nellitus. Che					Treatment of		
Extended						various compe	titive		
Professional						SIR / GATE /T			
Component (is a	to be solv		IND	11111100	JC-C	SIK / GATE / I.	in be onicis		
part of internal		cu scussed duri	ng the	Tutorial h	Olire				
component only,	(10 00 dis	seusseu uull	ng me	ı uwılaı II	Juis				
Not to be									
included in the									
external									
examination									
question paper)									

Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry, Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999, 1999 edn.
	 4. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976. 5.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi, 1993, New edn.
Reference Books	 Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12th edn. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of Medical Biochemistry, Hyderabad: Orient Longman. 3rd edition, 2001.
Website and e-learning source	https://www.ncbi.nlm.nih.gov/books/NBK482447/ https://training.seer.cancer.gov/treatment/chemotherapy/types.html https://www.classcentral.com/course/swayam-medicinal-chemistry- 12908

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	GREEN	CHEMIST	RY							
Course										
Paper No.	Elective 1		1			1	1			
Category	Elective	Year	IV	Credits	4	Course				
		Semester				Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4 1 - 5									
Prerequisites	Basic knowledge of general chemistry									
Objectives of the	To discuss the principles of green chemistry.									
course	To propose green solutions for chemical energy storage and conversion. Propose green solutions for industrial production of Petroleum and									
			ions fo	or industri	ial p	roduction of I	Petroleum and			
	Petrochen		11	.•	,•		1 ' 1 1			
	_	solutions to	r polit	ition preve	entio	n in Industrial	chemical and			
	fuel	a Automot	ام منا مردا	usters and (Thim.	in a in dyatniaa				
						oing industries.	of Surfactants,			
		nd inorgani			unai	production c	or Surfactants,			
	Organic a	iid iiioi gaiii	C CIICII	iicais.						
Course Outline	UNIT-I•	Introduction	- Need	for Green C	hemi	istry. Goals of G	reen Chemistry.			
Course Outline							terminologies,			
				•		•	ve principles of			
		mistry with					. P			
					a #0	namta antolyat	a and aalvanta			
							s and solvents			
			•	-	•		reen synthesis-			
	-	_	•				: Water,Ionic			
	liquids-cr	_			_	=	et on organic			
	reaction.	Supercriti	cal c	arbon di	oxid	e- properties,	advantages,			
	drawback	s and a fev	v exan	nples of o	rgani	c reactions in	scCO ₂ . Green			
	synthesis-	adipic acid	and ca	techol.						
					Gre	en Catalysis-A	Acid catalysts,			
				-		•	catalysts-Poly			
							eatalysts, Poly			
	supported	photosensi	tizers.			•				
	UNIT-IV	: Phase tra	nsfer c	atalysis ir	gre	en synthesis-ox	kidation using			
	hydrogen	peroxide	, cro	wn ethe	rs-est	terification, s	aponification,			
					eacti	on, Displacen	nent reaction.			
	Application	ons in orgar	nic synt	hesis.						
	UNIT-V:	Micro	wave	induced	gre	een synthesis	-Introduction,			
	Instrumer	ntation, Pr	rinciple	and a	_	•	chemistry –			
	Instrumer	ntation, Ca	vitatio	n theory	- U	Iltra sound a	ssisted green			
		and Applica								
Extended	-			-		various compe				
Professional			TRB /	NET/ UC	ъС-С	SIR / GATE /T	NPSC others			
Component (is a	to be solv									
part of internal	(To be dis	scussed duri	ing the	Tutorial h	ours))				
component only,										
Not to be included										
in the external										

examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall,1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. https://www.studyorgo.com/summary.php

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIO-INC	RGANIC (CHEN	IISTRY			
Course							
Paper No.	Elective 1					-	
Category	Elective	Year	IV	Credits	4	Course	
T		Semester	VIII	D		Code	
Instructional	Lecture	Tutorial	Lab .	Practice		Total	
hours per week	4		<u>-</u>			5	
Prerequisites		owledge of					
Objectives of the		stand the rol				C:1	
course			_	_		f iron, sulpur.	
		the toxicity mowledge o				S.	
		s on various	_	_		erties	
Course Outline							and storage of
						=	and potassium
					-		Zinc enzymes–
	1 -		_			•	ymes-catalase,
							Plast ocyanin,
	-		-	_		itamin-B12 co	=
							moglobin and
		-					sinding of CO,
							_
					_	_	redox system:
	1 -			-		-	chrome P-450.
				=		= = = = = = = = = = = = = = = = = = =	n. Iron-sulphur
						ture and classi	
							nitrogen fixing
	_		_	•			in nitrogenase-
							l complexes of
	dinitroger	_	ı iixai nmonia				d reduction of system-I and
		em-II-chlor			•	•	system-i and
							d, Zn, Pb, As,
							betes Drugs;
						Chelation the	
	treatment	. Diagnos	tic A	Agents:	Techi	netium Imag	ging Agents;
	Gadoliniu	_		_	empe	_	tical magnetic
	Field.						
	UNIT-V:	Enzymes	-Intro	duction as	nd pr	operties -nom	nenclature and
							and the effects
	_			_		_	emperature on
	enzyme re	eactions. Fa	ctors c	ontributing	g to tl	ne efficiency of	f enzyme.

Extended Professional Component (is a Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC to be solved	others
	ouicis
part of internal (To be discussed during the Tutorial hours)	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired Knowledge, Problem solving, Analytical ability, Professional	
from this course Competency, Professional Communication and Transferable skill	S
Recommended 1. Williams, D.R. – Introdution to Bioinorganic chemistry.	·
Text 2. F.M. Fiabre and D.R. Williams—The Principles of Bioinorganic	C
Chemistry, Royol Society of Chemistry, Monograph for Teacher	
3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co	
USA.	••
4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic	
Chemistry - 1993.	
5. R. Gopalan, V. Ramalingam, Concise Coordination Che	mistry.
S. Chand, 2001 .	,,,,
Reference Books 1. M.Satake and Y.Mido, Bioinorganic Chemistry- Dis	scovery
Publishing House, New Delhi (1996)	J
2. M.N. Hughes, 1982, The Inorganic Chemistry of Bio	logical
processes, II Edition, Wiley London.	C
3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.	
4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 20	02.
5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.	
Website and 1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemis	try-
e-learning source the-instant-notes-chemistry-series-d162097454.html	
2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chenge	<u>nistry-</u>
<u>5th-edition-d161563417.html</u>	
Course I couring Outcomes (for Morning with DOs and DSOs)	

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MATER	IAL SCIEN	NCE							
Course										
Paper No.	Elective					ī				
Category	Elective	Year	IV	Credits	4	Course				
		Semester	VIII			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites	Basic kn	owledge of	solid-s	tate chem	istry					
Objectives of the	To unde	rstand the	crysta	al structu	re, g	rowth metho	ds and X-ray			
course	scattering									
	To explain the optical, dielectric and diffusion properties of crystals.									
			sis of	semicondu	ictors	, superconduc	tivity materials			
	and magn									
	1	•			-	-	nanomaterials.			
			mporta	ance of ma	ateria	ls used for re	newable energy			
	conversion									
Course Outline							Miller indices -			
	_	•				C 1	space groups -			
	_				_		ocal lattice and			
	_	_	_		-		ystal structure—			
	_						charge density			
						pplications.				
							on-equilibrium			
							Low and high			
	_	ds- nucleat		_		_	Crystal growth netastable state.			
							rowth– Gel and			
							ralski methods.			
							ort. Lorentz and			
			-			lary extinction				
						•	Electromagnetic			
		-		•	-		- transparency,			
	1 -	` -					o-, electro-, and			
		•	•	• •		-	l polymer LED			
							on - electronic,			
	ionic, ori	entation, an	d spac	e charge p	olaris	sation. Effect	of temperature.			
	dielectric	constant,	dielect	ric loss.	Type	s of dielectr	ic breakdown-			
	intrinsic,	thermal, dis	charge	, electroch	nemic	al and defect b	oreakdown.			
	UNIT-IV	: Special	Mater	rials: Sup	ercor	ductivity: M	eissner effect,			
	Critical	temperature	and	critical r	nagne	etic Field, T	ype I and II			
	_			•	-		Soft and hard			
	_		-	-	_		. Magneto and			
						_	etic materials-			
		_	-				eations. Ferro-,			
							ications. Shape			
	1	-					-linear optics-			
			enerato	ors, mixing	g of L	aser waveleng	gths by quartz,			
	ruby and									
	UNIT-V	Materials	for Re	enewable	Ener	gy Conversio	n: Solar Cells:			

	Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar
	energy conversion: lamellar solids and thin films, dye-sensitized photo
	voltaic cells, coordination compounds anchored onto semiconductor
	surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical
	activation and splitting of water, CO2 and N2. Manganese based photo
	systems for water-splitting. Complexes of Rh, Ru, Pd and Pt -
D . 1.1	photochemical generation of hydrogen from alcohol.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1. Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
***	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
	3. https://bit.ly/3QyVg2R

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	ORGAN	IC SYNTH	ESIS	AND PE	ЮТ	OCHEMISTR	RY				
Paper No.	Core VII	-									
Category	Core	Year	V	Credits	4	Course					
		Semester	IX			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Basic kno	wledge of o	organ	ic chemist	ry						
Objectives of the	To under	stand the n	nolec	ular comp	lexit	y of carbon sl	keletons and the				
course		presence of functional groups and their relative positions.									
	-	-	nthet	ically imp	orta	nt reagents for	r any successful				
	organic s	•									
					ind 10	dentifying suita	able synthons to				
		cessful orga		•	oo oti	on mechanism					
			-	•		on mechanism organic reacti					
	10 gain t	iic kiiowicu,	gc or	photoenei	incai	organic reacti	ons.				
Course Outline	UNIT-I	Planning	an	Organic	Synt	hesis and Co	ontrol elements:				
		_		_	-		synthetic system				
		•	_				arbon framework				
	into sir	nple ration	al pi	recursors,	retr	osynthetic an	alysis, alternate				
		•	•				ormed, available				
	_						thods. Linear Vs				
	_	-		-		_	ng concepts of				
							rotective groups,				
							on retrosynthetic				
		s of stereocl		•		-	ergent synthesis,				
						•	nthetic analysis;				
							and bifunctional				
							diates, available				
	_					-	native methods.				
	Converge	ent and div	erger	nt synthes	sis, S	Synthesis base	d on umpolung				
							l, carbonyl, thiol				
							deprotection in				
							lements. Use of				
		•				~ ~	nts. Stereospecific				
	control ele	ments. Func	uonal	group ane	ialion	s and transposit	1011.				
	IINIT-II	· Pericycl	ic R	eactions:	Woo	odward Hoffm	nann rules; The				
							and correlation				
				1			ns; [2+2], [2+4],				
	_	•		•			ons. Cheletropic				
	_				_	-	ns of conjugated				
		-			_		(1,5), (3,3) and				
	` '					_	onic sigmatropic				
	rearrange		3roup				Regioselectivity,				
	stereosele	ectivity and	peris	electivity	in pe	ricyclic reactio	ns.				

	UNIT-IV: Organic Photochemistry-I: Photochemical excitation:								
	Experimental techniques; electronic transitions; Jablonskii diagrams;								
	intersystem crossings; energy transfer processes; Stern Volmer								
	equation.								
	Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish								
	type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi								
	reactions;								
	UNIT-V: Organic Photochemistry-I: Photochemistry of α,β-								
	unsaturated ketones; cis-trans isomerisation. Photon energy transfer								
	reactions, Photo cycloadditions, Photochemistry of aromatic								
	compounds; photochemical rearrangements; photo-stationery state; di-								
	π-methane rearrangement; Reaction of conjugated cyclohexadienone to								
D-4 1-1	3,4-diphenyl phenols; Barton's reactions.								
Extended	Questions related to the above topics, from various competitive								
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others								
Component (is a	to be solved								
part of internal	(To be discussed during the Tutorial hours)								
component only,									
Not to be included									
in the external									
examination									
question paper)									
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional								
from this course	Competency, Professional Communication and Transferable skills.								
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,								
Text	Tata McGraw-Hill, New York, 2003.								
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed.,								
	John-Wiley and sons, 2007.								
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel								
	publishing house, 1990.								
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University								
	Press, Second Edition, 2016.								
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International								
	Edition, 2011.								
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.								
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,								
	Great Britain, 2004.								
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn,								
	Cambridge University Press, Cambridge, 2007.								
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,								
	1972.								
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic								
	Reactions, New Age International Publishers, New Delhi, 2012.								
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf								
e-learning source									
	(6 NK 1 1/1 DO 1 DCO)								

Students will be able:

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds.

CO4: To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the course.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	COORD	INATION	CHE	MISTRY	- I				
Course	C VIII	T							
Paper No.	Core VII		17	C 1:4	1	C	1		
Category	Core	Year Semester	V IX	Credits	4	Course Code			
Instructional	Lastuna	Tutorial		Practice		Total			
hours per week	Lecture	1 utoriai	Lat	Practice		5			
Prerequisites									
Objectives of the	Basic knowledge of inorganic chemistry To gain insights into the modern theories of bonding in coordination								
course	compounds.								
	-		netho	ds to det	termii	ne the stabilit	cy constants of		
	complexe								
	To under	rstand and	cons	truct cor	relatio	on diagrams a	and predict the		
				_	-	in the complex			
						electron trans	fer mechanistic		
	1	of reactions				1 1	1		
C						d square plana	•		
Course Outline						-	ls: Crystal field		
	1						dral and square		
	1 -					*	ffecting 10Dq -		
	1 -			•		•	gy for high spin		
						=	splitting - site		
		-		-			tortions and its		
	_						level diagrams		
	concept o	f Weak and	stroi	ng fields, S	Sigma	a and pi bondir	ng in octahedral,		
	square pla	anar and teti	rahed	ral comple	exes.				
	UNIT-II:	Spectral	chara	acteristics	of o	complexes: Te	rm states for d		
	ions - cl	naracteristic	s of	d-d trans	sitions	s - charge tra	insfer spectra -		
	selection	rules for e	electro	onic spec	tra -	Orgel correlat	tion diagrams -		
	Sugano-T	anabe ener	gy le	vel diagra	ıms -	nephelauxetic	series - Racha		
	parameter	r and calcula	ation	of inter-el	ectro	nic repulsion p	arameter.		
	UNIT-II	I: Stability	and	d Magne	tic p	roperty of t	he complexes:		
							of complexes,		
							ise and overall		
				•			al factors and		
							composition of		
							half method,		
							Ion exchange		
							riation method orbit coupling,		
							quenching of		
		agnetic mon	-	_			1		
					sms	of substitutio	n reactions of		
							t and Labile		
							nistic pathways		
	for subst	itution reac	tions	; acid a	nd b	ase hydrolysis	of octahedral		

	complexes; Classification of metal ions based on the rate of water replacement reaction and their correlation to Crystal Field Activation Energy; Substitution reactions in square planar complexes: Trans effect, theories of trans effect and applications of trans effect in synthesis of square planar compounds; Kurnakov test.
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner sphere electron transfer reactions. Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only, Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry – Principles of structure and reactivity, 4th Edition,
	Pearson Education Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,
	Pearson Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New
	York, 1988.
Reference Books	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L.
	Guas, John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. 5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman
	and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTI	RY PRAC	TIC	AL			
Course									
Paper No.	Core IX		1			1			
Category	Core	Year	V	Credits	4	Course			
		Semester	IX			Code			
Instructional	Lecture	Tutorial	Lal	Practice		Total			
hours per week	-	1	4			5			
Prerequisites		owledge of p							
Objectives of the	To understand the principle of conductivity experiments through								
course		metric titrat			. •		co · · · · · · · · · · · · · · · · · · ·		
							coefficient, and		
	kinetics.	i energy o	1 the	reaction	бу	following ps	eudo first order		
	kinetics.								
	To const	ruct the nh	iase i	diagram o	of tw	o component	system forming		
				_		-	emperatures and		
	composit						1		
	To detern	nine the kin	etics	of adsorpt	ion c	of oxalic acid o	n charcoal.		
	To deve	lop the pot	tentia	l energy	diag	gram of hydro	gen ion, charge		
	density d	istribution a	and N	faxwell's	spee	d distribution	by computational		
	calculation								
Course Outline		Conductivi	•	-					
						ance of a stron	g electrolyte &		
		erification of		-					
)stwa	ld's Diluti	on L	.aw & Determi	nation of pKa of		
		ak acid.	7 11	1. 7	C	1 1 .	1 .		
						or weak electro	•		
						ingly soluble s			
				_		weak acid vs N alides only).	аОП).		
	0. 1 1001	phanon mi	ations	s (IIIIXtuic	OI II	andes only).			
	IINIT-II	: Kinetics							
			es of	acid hyd	rolv	sis of an este	r, determine the		
							energy of the		
	react			ont and t	1150	the activation	energy of the		
			s of	the reacti	on b	etween acetor	ne and iodine in		
							e the order with		
		ect to iodine	•						
		I: Phase dia							
					sim	ole binary syste	em		
	_	nalene-phena							
	_	phenone- di	pheny	yl amine					
	Adsorpti		1	1.	1 .	L d.4			
	_				oai &	z determinatio	n of surface area		
E . 1 1	,	ch isotherm				•			
Extended				_		om various com	_		
Professional	examinat	ions UPSC	/ IRI	3 / NET/ U	JGC.	-CSIR / GATE	/TNPSC others		

Component (is a	to be solved
Component (is a	
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To scientifically plan and perform all the experiments.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHARM	OCOGNO	SY A	ND PHY	ГОС	HEMISTRY	
Course							
Paper No.	Elective '	V					
Category	Elective	Year	V	Credits	4	Course	
		Semester	IX			Code	
Instructional	Lecture	Tutorial	Lab	Practice	1	Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	wledge of o	hemi	strv		I	
Objectives of the					l pro	ducts, biologi	ical functions and
course		ological use	_		1	, 8	
	To develo	op knowled	ge on	primary a	and s	econdary meta	abolites and their
	sources.					-	
	To under	stand the	conce	pts of iso	olatio	n methods a	nd separation of
		compounds					
						cosides and n	
			guio	delines o	f W	HO and di	fferent sampling
	technique						
Course Outline							Herbal drugs:
							and Source of
							cultures. Study of
							mic acid pathway
							Crude drugs.
				_		•	ampling of crude
							f foreign matter,
		Asn value	. Pny	tochemica	al in	vestigations-C	General chemical
	tests.	Ev4ve e4i e	- T		. C.		1ft
							ds of extraction,
	extraction		Dec	oction, pe	ercora	ation, immers	sion and soxhlet
			c co1	inter curr	ant c	steam distillat	tion, supercritical
							ctors affecting the
		extraction p			ica c	Attaction. Pac	nois affecting the
	+				Tern	enoids and	volatile oils:
					_		and separation
							calyptol. Volatile
							Classifications of
							Structure uses.
						taraxasterol:	
	_	ological appl		•			
	UNIT-IV	: Drugs	conta	ining all	kaloi	ds: Occurrer	nce, function of
	alkaloids	in plants, p	harm	aceutical	appli	ications. Isola	ntion, Preliminary
							hods of structural
							mical properties,
			_				perties and uses.
							lycosides: Basic
							litative analysis.
							diac glycosides-
							les- Diosgenin,
	hecogenii	n. Plant pi	gmen	ts: Occur	renc	e and gene	eral methods of

structure determination, isolation and synthesis of quercetin and
cyanidin chloride. Marine drugs -Selected Drug Molecules:
Cardiovascular active substances, Cytotoxic compounds, antimicrobial
compounds, antibiotic compounds, Anti-inflammatory agents. Marine
toxins.
Questions related to the above topics, from various competitive
examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
to be solved
(To be discussed during the Tutorial hours)
Knowledge, Problem solving, Analytical ability, Professional
Competency, Professional Communication and Transferable skills.
- ·
1. Gurdeep R Chatwal (2016), Organic chemistry of Natural
products, Volume I&II, 5th edition, Himalaya publishing House.
2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of
Natural Products, Revised edition, Narosa Publishers.
1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to
Modern Techniques of Plant Analysis, 4th edition, Indian reprint,
Springer.
2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2
nd edition, New age international (P) limited, New Delhi.

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIOMOL	ECULES A	ND I	HETERO	CYC	CLIC COMPO	DUNDS
Course							
Paper No.	Elective V		.	- II			
Category	Elective	Year	V	Credits	4	Course	
		Semester	IX			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1 1 1 1	<u> </u>			5	
Prerequisites		vledge of ch				1 .	0.1.1.1
Objectives of			ncept	s and bio	logic	al importance	of biomolecules
the course	and natura	-	£	: C	1 1		
		d hormones		ions of ca	rbon	ydraies, proieii	ns, nucleic acids,
				of alkalo	ida or	nd terpenoids.	
						-	ules and natural
	products.	iic iiic siiu	cture	determin	ation	of biomolec	uics and natural
	1	and constr	net tl	ne structur	re of	new alkaloid	s and terpenoids
		ent method		Juanu	01	no umulolu	and terpenoids
Course Outline				metaboli	sm (of carbohydra	ates: Definition,
		•				•	onosaccharides:
			_			•	glucose, fructose
	and mann	ose (struct	ure	determina	tion	not required), physical and
			_				ccharides: Ring
		•					and chemical
							charides: Starch,
			ose -	– structu	re a	nd properties	, glycolysis of
	carbohydra	ates.					
	UNIT-II:	Steroids a	nd H	[ormones:	Ste	roids-Introduct	tion, occurrence,
	nomenclati						s' hydrocarbon,
							gical importance,
							ts, physiological
							ne. Hormones-
		-					- androgens and
							sol structure and
						aline and thyro	
						-	d purification of
	*		_	amination a		-	. Catabolism of amination and
					,		eic acids. Amino
							the synthesis of
				•			cyclic base and
							to nucleotides.
							A, Watson-Crick
	_	id phase syn	-				,
							d punification of
						-	d purification of
	1 -		_	amination a		-	. Catabolism of amination and
							eic acids. Amino
	_		-	_			the synthesis of
				•			cyclic base and
	nacicoside	s - uncer	COIIIU.	1111111111, 10	riiia	non or nettle	cyclic base and

	nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis ofoligonucleotides.
	UNIT-V: Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley VCH, North America, 2007.
	I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson Education Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi,2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009.
Reference Books	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education Asia,2004. Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co,2000. Shoppe, Chemistry of the steroids, Butterworthes,1994. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad,2004. M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, Daya Publishing House, Delhi,2005.
Website and	ps://www.organic-chemistry.org/
e-learning	ps://www.studyorgo.com/summary.php
Source Course Learning	ps://www.clutchprep.com/organic-chemistry Outcomes (for Mapping with POs and PSOs)
Students will be al	,

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	COORD	INATION	CHE	MISTRY	- II		
Paper No.	Core X						
Category	Core	Year	V	Credits	4	Course	
Category	Core		X	Credits	•	Code	
Instructional	Lastuna	Semester		Duastica			
Instructional	Lecture	Tutorial	Lat	Practice		Total 5	
hours per week	4	1 1 6	<u> </u>	• 1	. ,	3	
Prerequisites Chicagon falls		owledge of i	_			.4144	1
Objectives of the	1	_			oncep	ots and structu	ıral aspects of
course		etallic comp			1:		41
	behaviou		or or	ganometai	ilic c	ompounds and	their catalytic
			ot the	atmiatima	of	acardination ac	mnounds using
		•	ci ine	structure	01 (coordination co	mpounds using
		opic tools.	,,,,	a and han	din a	in acandination	a amount a va a a
						in coordination f selected comp	
Course Outline							
Course Outline							Classification of and 16 electron
	0	1					e: Ziese's salt),
							yclopentadienyl
							n metallocenes;
		-			-	_	diagram of CO;
					•		oach of M-CO
							nergistic effect
	_						rbonyl clusters:
	,						Structures based
		•	_	•		ry or Wade's ru	
						•	c compounds:
				•		0	lition, reductive
							on reaction and
							drogenation of
				_			ins using cobalt
			-			-	olefin (Wacker
		-	,	-			eaction, cyclo-
	• /					-	sts, Monsonto
	process.		•			•	
	UNIT-II	I: Inorgan	ic sp	ectroscop	y -I	: IR spectrosco	opy: Effect of
		_	_	_	-	-sulphato, carbo	
	aqua, ni	tro, thiocya	anato,	cyano,	thiou	irea, DMSO d	complexes; IR
	spectrosc	opy of	carbo	onyl con	mpou	ınds. NMR	spectroscopy-
	Introduct	ion, applica	tions	of 1H, 15	N, 19	9F, 31P-NMR s	spectroscopy in
	structural	identificat	ion o	f inorgani	c co	mplexes, fluxio	nal molecules,
	quadrupo	lar nuclei- e	effect	in NMR s	pecti	oscopy.	
	UNIT-IV	': Inor <mark>gani</mark>	c spe	ectroscopy	γ -II :	Introductory te	erminologies: g
						and factors affe	
	Applicati	ons of ESF	to c	coordinatio	on co	ompounds with	one and more
	than one	unpaired	electi	rons – hy	perf	ine and second	dary hyperfine
					-	pectra of V(II),	
							copper(II) and
							Mossbauer

Extended	effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds. UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures - adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N ₂ , O ₂) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only, Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	1. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000.
	 P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSICAL CHEMISTRY-II
Course	

Paper No.	Core XI										
Category	Core	Year	V	Credits	4	Course					
		Semester	X			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4 1 - 5										
Prerequisites	Basic kno	Basic knowledge of physical chemistry									
Objectives of the	To understand the essential characteristics of wave functions and need										
course	for the quantum mechanics.										
		To know the importance of quantum mechanical models of particle in a box, rigid rotor and harmonic oscillator.									
						1	1				
	systems.	me quan	luIII	mechanics	s to	nydrogen and	d polyelectronic				
		arize the svi	mmet	ry in mole	cule	s and predict th	ne point groups.				
							g he concepts of				
	group the				11) 01		, no comorpio er				
Course Outline			icle 4	duality. U	ncert	tainty principle	e, Particle wave				
Source Sutillity							perties of wave				
		-		-		-	ed, Orthogonal,				
							an properties of				
		_		-			body radiation,				
							ntum mechanics,				
	Postulate		ii y ai c	gen speet	1 01111.	Ticea for quar	of				
			. Scl	nrodinger	wav	e equation. Ti	me independent				
	_	dependent	,			1	T				
	UNIT-II: Quantum models: Particle in a box-1D, two dimensional and three-dimensional, degeneracy, application to linear conjugated molecular system, free particles, ring systems. Harmonic Oscillator-wave equation and solution, anharmonicity, force constant and its significance. Rigid Rotor-wave equation and solution, calculation of rotational constants and bond length of diatomic molecules.										
	UNIT-III: Applications to Hydrogen and Poly electron atoms: Hydrogen atom and hydrogen like ions, Hamiltonian-wave equation and solutions, radial and angular functions, representation of radial distribution functions. Approximation methods—variation methods: trial wave function, variation integral and application to particle in 1D box. Perturbation method - first order applications. Hatrefock self-consistent field method, Hohenberg-Kohn theorem and Kohn-Sham equation, Helium atom-electron spin, paulis exclusion principle and Slater determination.										
							metry elements, al point groups-				
							n and classes of				
							direct product				
		_					irreducible				
							character table				
		C_{2h} , C_{3v} and C_{2h}				ondia de don Ol					
	UNIT-V	: Application	ons (of quantu	m a		eory: Hydrogen (VB) treatment,				

	Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system:Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. R.K. Prasad, Quantum Chemistry, New Age International
Text	Publishers, New Delhi, 2010, 4th revised edition.
	2. F. A. Cotton, Chemical Applications of Group Theory, John
	Wiley & Sons, 2003, 2 nd edition.
	3. A. Vincent, Molecular Symmetry and Group Theory. A
	Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2 nd Edition.
	4. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4 th edition.
	5. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2 nd edition.
Reference Books	1. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th
	edition.
	2. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular
	Approach, Viva Books
	Pvt. Ltd, New Delhi, 2012.
	3. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum
	Mechanics of Chemical
	Systems, Oxford & IBH Publishing Co., New Delhi, 1999.
	4. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,
	Prentice Hall. Inc, 1980
	5. J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,
	2011, Reprint.

Website and	1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	ANALY	TICAL INS	STRU	JMENTA	TIO	N TECHNIQ	UES
Paper No.	Core XI	[
Category	Core	Year	V	Credits	4	Course	
Category	Corc	Semester	X	Cicuits	'	Code	
Instructional	Lecture			Practice		Total	
1	Lecture	1	4) I lactice		5	
hours per week	-	1	4] 3	
Prerequisites	To dogion	alamamata ana	مناها	mathada fa		tification of an	
Objectives of the						ntification of spectrumental meth	ods of analysis.
course	1				-		turbidimetry and
		ity measuren		tammants	111 11	idicitais dsing	tarorannery and
				nalysis of in	orga	nic and organic	materials.
							orption techniques.
Course Outline	UNIT-I:						1
		etermination	n of t	he equival	ent c	onductance of	a weak acid at
						ying Ostwald	
						nstant of the a	
						onductance of	
				-			ining the validity
		•				g law at high o	•
		_		•			nd CH ₃ COOH Vs
		aOH.	110 111			cont of free ar	ia cii,cocii vs
			ric tit	ration of N	NH ₄ C	Cl Vs NaOH.	
						COONa Vs HC	21.
							CH ₃ COOH Vs
		aOH				ar o or from and	
	7. D	etermination	n of p	K _a of wea	k aci	id by EMF me	thod.
		otentiometri	_			•	
		otentiometri					
							e and Iodide Vs
	A	gNO_{3}					
			n of t	he pH of b	uffe	r solution by E	EMF method
		sing Quinhy		-		•	
							ence of acid by
		olarimetric 1			•	5 1	,
	UNIT-II						
			Fe. 0	Cu and Ni	bv c	olorimetric me	ethod.
					-	photometric n	
				•		-	ole ratio of the
						ilibrium const	
		omplex form		_	1"		
		-			(mo	ol/L) of ferricva	anide present in
		e given solu			•	,	1
							rricyanide using
		yclic voltam					- /
	-		-		d red	lox potential o	f ferri-
						cyclic voltamn	
		-		-	_	nate present in	
	/. L	ommanon or	uic o	inount OI	suipi	iate present III	unc given

	,
	solution using Nephelometric turbidimeter.
	8. Estimation of the amount of nitrate present in the given solution
	using spectrophotometric method.
	9. Heavy metal analysis in textiles and textile dyes by AAS
	10. Determination of caffeine in soft drinks by HPLC
	11. Analysis of water quality through COD, DO, BOD
	measurements.
	12. Assay of Riboflavin and Iron in tablet formulations by
	spectrophotometry
	13. Estimation of chromium in steel sample by spectrophotometry
	14. Determination of Stern-Volmer constant of Iodine quenching by
	fluorimetry
	15. Determination of ascorbic acid in real samples using Differential
	Pulse Voltammetry and comparing with specifications
	16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of metal ions by Paper chromatography
	17. Estimation of chlorophyll in leaves and phosphate in waste
	water by colorimetry.
	18. Estimation of Fe(II) by 1,10 phenonthroline using
	spectrophotometry
	UNIT-III: Interpretation and identification of the given spectra of
	various organic compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	,
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
	1),
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, <i>Vogel's</i>
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989.
	3. J. D. Woollins, <i>Inorganic Experiments</i> ; VCH: Weinheim,
	1995.
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
	Viva
	Books, New Delhi, 2009.
	5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	1000 manian, 1110 man, 100 man, 1100 man Chemistry (1 art 11), 0.

	Viswanathan Co. Pvt., 1996.
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
Website and	1 https://bit.lv/2OESE7t
e-learning source	1. https://bit.ly/3QESF7t
	2. https://bit.ly/3QANOnX

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	CHEMISTRY OF NATURAL PRODUCTS											
Course	T1 4° X7	nr										
Paper No.	Elective V		T 7	G 114	1 4							
Category	Core	Year	V	Credits	4	Course						
		Semester	X			Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total						
hours per week	4	1	-			5						
Prerequisites		Basic knowledge of general chemistry										
Objectives of	To learn th	ne basic conc	epts a	ınd biologic	al im	portance of b	oiomolecules					
the course	and natural	-										
	To explain	various of fu	nction	s of carboh	ydrate	es, proteins, n	ucleic acids,					
	steroids and	d hormones.										
	To understa	and the function	ons of	alkaloids ar	nd terj	penoids.						
	To elucida	te the structu	are de	etermination	of 1	biomolecules	and natural					
	products.											
	To extract	and construc	t the	structure of	f new	alkaloids an	d terpenoids					
	from differ	ent methods.					_					
Course Outline	UNIT-I: A	lkaloids: Intro	oducti	on, occurre	nce, c	lassification, i	solation and					
	functions o	f alkaloids. Cl	assific	cation, gene	ral me	ethods of struc	ctural					
	elucidation	. Chemical me	ethods	of structure	e detei	rmination of C	Coniine,					
	Piperine, N	icotine, Papav	erine	Atropine, (Quinir	ne, Belladine,	Cocaine,					
	Heptaphyll	ine, Papaverin	e and	Morphine.								
	UNIT-II:	Terpenoids	: Int	troduction,	occi	arrence, Ison	prene rule,					
		-				ing structure	Structure					
						ne, Squalene,						
		-				rism, Structui	_					
		sis of β-carote				,	,					
						ocyanines: In	troduction to					
	anthocyanii			nd general			ynthesis of					
	_					d determination	•					
	_	-				d determination						
	_	-				on and import						
						roduction, occ						
						ral properties						
						of Uric acid a						
	_	-		-		menclature, o						
						istry, classific	_					
	hydrocarbo	-				r reactions	of sterols,					
		_		-		activity, bios	,					
		from squalene		1 7 8		37	J					
	UNIT-V:	<u>.</u>	Oves:	Occurren	ce.	classification	, isolation,					
			•		,	. Structural d	,					
		sis of indigoiti										
Extended					vario	ous competitiv	re					
Professional						GATE /TNPS						
Component (is a	be solved		/ 11				2 2 3 3 3 4 5 6 6					
part of internal		ussed during t	he Tu	torial hours)							
Part of Intellial	(10 be disc	assed during t	I U		,							

component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,
Text	Himalaya Publishing House, Mumbai, 2009.
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,
	Himalaya Publishing House, Mumbai, 2009.
	3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,
	Goel Publishing House, Meerut, 1997.
	4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,
	Goel Publishing House, Meerut, 1997.
	5. I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson
	Education Asia, 1975.
Reference	1. I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson
Books	Education Asia, 2004.
20012	2. Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, Vol 1 and Vol 10, Ukkaz Publications,
	Hyderabad,2004.
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	- International Property of the Control of the Cont
Source	

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M

CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	POLYME	R CHEMIST	RY									
Course	T1 41 X7											
Paper No.	Elective V		* 7	- I'	1							
Category	Core	Year	V	Credits	4	Course						
T / / 1	T	Semester	X	D 4		Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total						
hours per week	4	1 1 2	-			5						
Prerequisites		Basic knowledge of general chemistry To learn the basic concepts and bonding in polymers.										
Objectives of		1										
the course	1	7 1	_	•		tions and kinet						
		and the impor	rtance	or industri	ai po	lymers and the	eir synthetic					
	uses.		1	.: ~1.4 ~ £ ~1								
		ne the molecu										
Course Outline		the degradation					aumination.					
Course Outline						t and its Det lymers; cohes						
						methods, Tg						
						ecular mass o						
		•				Weight averag	1 "					
		_		` /		mination of hi						
	`/	and methods.		outur Weight	actor		.g.: porymers					
				cinetics of I	Polvn	nerization: Cl	hain growth					
						al polymeriza						
						n. Reaction k						
		ymerization, I					1					
						nd Polymer D	egradation:					
	Bulk, Solu	ition, Emulsic	n, Su	ispension, s	olid,	interfacial and	d gas phase					
						on, Thermal						
			photo	degradation,	Phot	to stabilizers, S	Solid and gas					
	phase poly											
						of fibre forming						
				-	•	ethylene, Po	• • • •					
	1				•	Chloride, Poly						
	_	nylon and				setting Plasti						
		-				ers: Natural						
					-	ene. Conductir	_ ,					
						riles, poly phen nethacrylate,						
	1 "		•	•	•	nemacryfate, sylene and po						
	glycols.	s, poryurcular	ics, p	oryurcas, po	луси	Tyrene and pe	orypropyrene					
		Polymer Pr	.UCESS	ing: Comr	กาเทศ	ling: Polymer	· Additives					
		•				ilizers, fire ret						
	· ·	•		-		g, die casting,						
		_		•		ng and reinfo	-					
	_	Thermofoamin				-	catalysts –					
	_		_	_		compounds, b	•					
						eous catalysis						
	centres.	,		,	_	J						
Extended	Questions	related to the a	bove	topics, from	vario	ous competitiv	e					

Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.
Text	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International
	(Pvt) Limited, 1996.
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &
	Company, New Delhi, 2004.
Reference	1. F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley Interscience,
Books	1971.
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and
	Engineering, Tata McGraw-Hill, 1978.

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course: CORE INDUSTRIAL MODULES

Paper Number: CORE X

Suggestive topics for Core Industry Modules:

1. Industrial Processes Recommended

Text:

- 1. H.A.Strobel, Chemical Instrumentation: A Systematic approach, 2nd Edition (1973)Addition Wesley, Reading, Mass
- 2. R.L.Pecsok, L.D. Shields, T.Cavins and L.C.Mcwilliam, 2nd Edition (1976), john Wiley &Sons, New York
- 3. E.W.Berg, Chemical Methods of Separations, 1st Edition (1963), McGraw Hill, New York

2. Chemometrics and quality

$control\ in\ industry Recommended$

Text:

- 4. G.D.Christian, Analytical chemistry, 5th edition (1994), John Wiley & Sons, New York
- 5. M.A. Sharat and D.L. Illuran, Chemometrics, John Wiley, New York
- 6. Canlcutt and R. Roddy, Statistics for Analytical Chemists, Chapmam and Hall, NewYork.
