

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

M. Sc. Physics (5 Years Integrated)

UNIVERSITY DEPARTMENT
CURRICULUM AND SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

Contents

- i. Preamble
- ii. PO and PSO Description
- iii. UG Template
- iv. Methods of Evaluation & Methods of Assessment
- v. Semester Index.
- vi. Subjects Core, Elective, Non-major, Skill Enhanced, Ability Enhanced, ExtensionActivity, Environment, Professional Competency
 - 1) Course Lesson Box
 - 2) Course Objectives
 - 3) Units
 - 4) Learning Outcome
 - 5) Reference and Text Books
 - 6) Web Sources
 - 7) PO & PSO Mapping tables

M.Sc., PHYSICS (5 Year Integrated) SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the postgraduate programme in Physics (Five years) is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provide a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

ated M.Sc. PHYSICS s [PG]
s [PG]
s [PG]
Disciplinary knowledge: Capable of demonstrating comprehensive edge and understanding of one or more disciplines that form a part integrated postgraduate Programme of study Communication Skills: Ability to express thoughts and ideas vely in writing and orally; Communicate with others using write media; confidently share one's views and express himself; demonstrate the ability to listen carefully, read and write cally, and present complex information in a clear and concise rot of different groups. Critical thinking: Capability to apply analytic thought to a body of edge; analyse and evaluate evidence, arguments, claims, beliefs on asis of empirical evidence; identify relevant assumptions or ations; formulate coherent arguments; critically evaluate practices, as and theories by following scientific approach to knowledge pment. Problem solving: Capacity to extrapolate from what one has an applies their competencies to solve different kinds of non-arproblems, rather than replicate curriculum content knowledge; and one's learning to real life situations. Analytical reasoning: Ability to evaluate the reliability and note of evidence; identify logical flaws and holes in the arguments of analyze and synthesize data from a variety of sources; draw valid sions and support them with evidence and examples, and addressing ny viewpoints. Research-related skills: A sense of inquiry and capability for relevant/appropriate questions, problem arising, synthesizing and ating; Ability to recognise cause-and-effect relationships, define ms, formulate hypotheses, test hypotheses, predict cause-and-effect niships; ability to plan, execute and report the results of an ment or investigation Cooperation/Team work: Ability to work effectively and tfully with diverse teams; facilitate cooperative or coordinated effort part of a group, and act together as a group or a team in the interests mmon cause and work efficiently as a member of a team Scientific reasoning: Ability to analyse, interpret and draw

perspective.

- **PO9: Reflective thinking**: Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society.
- **PO10 Information/digital literacy:** Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.
- **PO 11 Self-directed learning**: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
- **PO 12 Multicultural competence:** Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.
- PO 13: Moral and ethical awareness/reasoning: Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.
- **PO 14:** Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.
- **PO 15: Lifelong learning:** Ability to acquire knowledge and skills, including "learning how to learn" that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge / skill development / re-skilling.

	PSO1: Placement:
Programme	To prepare the students who will demonstrate respectful engagement
Specific	with others' ideas, behaviors, and beliefs and apply diverse frames of
Outcomes:	reference to decisions and actions.
(These are mere	PSO 2: Entrepreneur:
guidelines.	To create effective entrepreneurs by enhancing their critical thinking,
Faculty can	problem solving, decision making and leadership skill that will
create POs	facilitate start-ups and high potential organizations
based on their	PSO3: Research and Development:
curriculum or	Design and implement HR systems and practices grounded in
adopt from	researches that comply with employment laws, leading the organization
UGC or	towards growth and development.
University for	PSO4: Contribution to Business World:
their	To produce employable, ethical and innovative professionals to sustain
Programme)	in the dynamic business world.
	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
PSO 1	Y	Y	Y	Y	Y	Y	Y	Y
PSO 2	Y	Y	Y	Y	Y	Y	Y	Y
PSO3	Y	Y	Y	Y	Y	Y	Y	Y
PSO 4	Y	Y	Y	Y	Y	Y	Y	Y
PSO 5	Y	Y	Y	Y	Y	Y	Y	Y

3 – Strong, 2- Medium, 1- Low

Highlights of the Revamped Curriculum:

- ➤ Student-centric, meeting the demands of industry and society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- ➤ The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life

- situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
- ➤ The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- ➤ The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- ➤ The Internship during the second year vacation will help the students gain valuable work experience that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- > State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest Artificial Intelligence.

Value additions in the Revamped Curriculum:

Semester	Newly introduced Components	Outcome / Benefits
I	Foundation Course: The transition of learning from higher secondary to	Instill confidence among students Create interest for the subject
1	higher education, providing the	Create interest for the subject
	learning Literature and analysing the	
	world through the literary.	
	Skill Enhancement papers	➤ Industry ready graduates
I, II, III,	(Discipline centric / Generic /	➤ Skilled human resource
IV	Entrepreneurial)	➤ Students are equipped with essential skills
		to make them employable
		Training on language and communication
		skills enable the students gain knowledge
		and exposure in the competitive world.
		➤ Discipline centric skill will improve the Technical knowhow of solving real life
		problems.
		Strengthening the domain knowledge
III, IV, V	Elective papers	Introducing the stakeholders to the State - of
& VI	1 1	Art techniques from the streams of multi-
		disciplinary, cross disciplinary and inter
		disciplinary nature
		Emerging topics in higher education
		/industry /communication network / health
		sector etc. are introduced with hands-on-
		Training.
***		Exposure to industry moulds students into
IV	Elective Papers	solution providers
		 Generates Industry ready graduates Employment opportunities enhanced
V		Employment opportunities enhancedSelf-learning is enhanced
Semester	Elective papers	Application of the concept to real situation
Scinestei	Tital a babara	is conceived resulting in tangible
		outcome
VI		Enriches the study beyond the course.
Semester	Elective papers	Developing a research frame work
		andpresenting their independent and
		intellectual ideas effectively.
	dits: For Advanced Learners /	To cater to the needs of peer learners /
Honors de		research aspirants
Skills acqu	iired from the Courses	Knowledge, Problem Solving, Analytical
		ability, Professional Competency, Professional
		Communication and Transferrable Skill

Credit Distribution for Integrated PG Programme (up to 6th Semester)

Sem I	Credit	Sem II	Credit	Sem III	Credit	Sem IV	Credit	Sem V	Credit	Sem VI	Credit
1.1. Language - Tamil	3	2.1. Language - Tamil	3	3.1. Language - Tamil	3	4.1. Language - Tamil	3	5.1 Core Course – CC IX	5	6.1 Core Course – CC XIII	5
1.2 English	3	2.2 English	3	3.2 English	3	4.2 English	3	5.2 Core Course – CC X	5	6.2 Core Course – CC XIV	5
1.3 Core Course – CC I	4	2.3 Core Course – CCIII	4	3.3 Core Course – CC V	4	4.3 Core Course – CC VII Core Industry Module	4	5. 3.Core Course CC -XI	4	6.3 Core Course – CC XV	4
1.4 Core Course – CC II	4	2.4 Core Course – CCIV	4	3.4 Core Course – CC VI	4	4.4 Core Course – CC VIII	4	5. 3.Core Course / Project with viva- voce CC -XII	4	6.4 Elective -VII Generic/ Discipline Specific	3
1.5 Elective I Generic/ Discipline Specific	4	2.5 Elective II Generic/ Discipline Specific	4	3.5 Elective III Generic/ Discipline Specific	4	4.5 Elective IV Generic/Discipline Specific	4	5.4 Elective V Generic/ Discipline Specific	3	6.5 Elective VIII Generic/ Discipline Specific	3
1.6 Skill Enhancement Course SEC-1	2	2.6 Skill Enhancement Course SEC-2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	4.6 Skill Enhancement Course SEC-6	2	5.5 Elective VI Generic/ Discipline Specific	3	6.6 Extension Activity	1
1.7 Skill Enhancement - (Foundation Course)	2	2.7 Skill Enhancement Course –SEC- 3	2	3.7 Skill Enhancement Course SEC-5	2	4.7 Skill Enhancement Course SEC-7	2	5.6 Value Education	2	6.7 Professional Competency Skill	2
				3.8 E.V.S	2			5.5 Summer Internship /Industrial Training	2		
	22		22		23		22		28		23
				<u> </u>		Total Credit Points		I		<u> </u>	140

CREDIT DISTRIBUTION FOR P.G. (up to 6th Semester)

		No. of Papers	Credits		
Part I	Tamil(3 Credits)	4	12		
Part II	English(3 Credits)	4	12		
Part III	Core Courses (4x5 Credits & 11x 4 Credits)	15	64		
	Elective Courses :Generic / Discipline Specific (3 & 4 Credits)	8	28		
	Specific (5 & 4 Credits)	Total	116		
Part IV	Skill Enhancement Courses (6x2 credits &	6	12		
	1x1 credit)	1	1		
	Summer Internship /Industrial Training Foundation	1	2		
	Course				
	Skill Enhancement (Foundation course)	1	2		
	Professional Competency Skill Enhancement	1	2		
	course	-			
	EVS (2 Credits)	1	2		
	Value Education (2 Credits)	1	2		
		Part IV Credits	23		
Part V Extension Activity (NSS / NCC / Physical Education)					
Total	Credits for the Integrated PG Programme (up	to 6 th Semester)	140		

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total
							Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	12	12	12	12	24	20	92
Part IV	4	4	5	4	4	2	23
Part V	-	-	-	-	-	1	1
Total	22	22	23	22	28	23	140

^{*}Part I. Part II and Part III components will be separately taken into account for CGPA calculation and classification for the integrated 5 year Post graduate programme and the other components. IV, V has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree

Methods of Evaluation							
	Continuous Internal Assessment Test						
Internal	Assignments	25 Marks					
Evaluation	Seminars						
	Attendance and Class Participation						
External Evaluation	End Semester Examination	75 Marks					
	Total	100 Marks					
	Methods of Assessment						
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions						
Understand/	MCQ, True/False, Short essays, Concept explanations, Short summary or						
Comprehend (K2)	Overview						
Application (K3)	Suggest idea/concept with examples, Suggest formulae, S Observe, Explain	solve problems,					
Analyze (K4)	Problem-solving questions, Finish a procedure in many steps, Differentiate						
	between various ideas, Map knowledge						
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pro-	ros and cons					
Create (K6)	Check knowledge in specific or offbeat situations, Discu Presentations	ssion, Debating or					

METHOD OF EVALUATION (For both Theory and Practical)

Continuous Internal Assessment	External Examination	Total
25	75	100

Credit Distribution for all UG courses with LAB Hours

First Year

Semester-I

Part	List of Courses	Credit	
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Allied Courses [in Total] (5+3+6)	12	14
	Skill Enhancement Course SEC-1 (NME)	2	2
Part-4	Foundation Course	2	2
		22	30

Semester-II

Part	List of Courses	Credit	
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Allied Courses including laboratory [in Total]	12	14
	(5+3+6)		
Part-4	Skill Enhancement Course -SEC-2 (NME)	2	2
	Skill Enhancement Course -SEC-3 (Discipline/Subject Specific)	2	2
		22	30

Second Year

Semester-III

Part	List of Courses	Credit	No. of
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Allied Courses including laboratory [in Total] (5+3+3+3)	12	14
Part-4	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	1	2
	Skill Enhancement Course -SEC-5 (Discipline / Subject Specific)	2	2
	Environmental Science (EVS)	2	2
		23	30

Semester-IV

Part	List of Courses	Credit	No. of
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Allied Courses including laboratory [in Total] (5+3+3+3)	12	14
Part-4	Skill Enhancement Course -SEC-6 (Discipline / Subject Specific)	2	2
	Skill Enhancement Course -SEC-7 (Discipline / Subject Specific)	2	2
		22	30

Third Year

Semester-V

Part	List of Courses	Credit	No. of Hours
Part-3	Core Courses including Project / Elective Based	24	26
Part-4	Value Education	2	2
	Internship / Industrial Visit / Field Visit	2	2
		28	30

Semester-VI

Part	List of Courses	Credit	No. of
			Hours
Part-3	Core Courses including Project / Elective Based & LAB	20	28
Part-4	Extension Activity	1	-
	Professional Competency Skill	2	2
		23	30
	Total Credits	14	10

DISCIPLINE SPECIFIC ELECTIVES

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. PRINCIPLES OF PROGRAMMING CONCEPTS AND C
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE
- 10. MEDICAL INSTRUMENTATION
- 11. AGRICULTURAL PHYSICS
- 12. GEO PHYSICS

DISCIPLINE SPECIFIC CORE – ELECTIVE (Compulsory)

1. DIGITAL ELECTRONICS AND MICROPROCESSOR 8085.

NON-MAJOR ELECTIVES

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. MEDICAL PHYSICS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

INTEGRATED M. SC DEGREE COURSE IN PHYSICS (5 YEARS) - COURSE STRUCTURE

	SEMESTER I						
	Title of the component and Paper	Credit	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Crean	/week	Hrs	CIA	U E	Total
I	Language Paper-1 – Tamil I / Other Lang.	3	6	3	25	75	100
II	Paper-1 English I	3	6	3	25	75	100
	Core I- Properties of Matter and Acoustics	5	6	3	25	75	100
III	Core II- Properties of Matter and Acoustics	5	5	3	25	75	100
	(Practical)						
	Elective I - Allied Mathematics I	3	5	3	25	75	100
	SEC-1 - Choose any one Course from Non	2	2	3	25	75	100
IV	Major Elective - Physics For Everyday Life						
	Foundation Course- Introductory Physics	2	2	3	25	75	100
	Semester Total	23	32	-	175	525	700

	SEMESTER II						
	Title of the component and Paper	Credit	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Credit	/week	Hrs	CIA	U E	Total
I	Language Paper-2 – Tamil II / Other Lang.	3	6	3	25	75	100
II	Paper-2 English II	3	6	3	25	75	100
	Core III - Heat, Thermodynamics and Statistical	5	5	3	25	75	100
III	Physics						
	Core IV- Heat, Thermodynamics and Statistical	5	5	3	25	75	100
	Physics (Practical -2)						
	Elective II - Allied Mathematics II	3	6	3	25	75	100
	SEC-2	2	2	3	25	75	100
IV	Astrophysics						
	SEC-3	2	2	3	25	75	100
	Medical Instrumentation						
	Semester Total	23	32	-	175	525	700

	SEMESTER III						
	Title of the component and Paper	Credit	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Creuit	/week	Hrs	CIA	U E	Total
I	Language Paper-3 – Tamil III / Other Lang	3	6	3	25	75	100
II	Paper-3 English III	3	6	3	25	75	100
	Core V- General and Classical Mechanics	5	5	3	25	75	100
III	Core VI- General and Classical Mechanics	5	5	3	25	75	100
	(Practical -3)						
	Elective III - Allied Chemistry I	3	5	3	25	75	100
	SEC - 4 (Entrepreneurial skill)	1	1	3	25	75	100
	Home Electrical Installation						
IV	SEC-5 –	2	2	3	25	75	100
	Nano Science and Nano Technology						
	EVS	2	2	3	25	75	100
	Semester Total	24	32	-	225	675	900

	SEMESTER IV						
	Title of the component and Paper	Credit	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Credit	/week	Hrs	CIA	U E	Total
I	Language Paper-4 – Tamil IV / Other Lang	3	6	3	25	75	100
II	Paper-4 English IV	3	6	3	25	75	100
	Core VII- Optics and Spectroscopy	5	5	3	25	75	100
III	Core VIII- Optics and Spectroscopy (Practical – IV)	5	5	3	25	75	100
	Elective IV - Allied Chemistry II	2	4	3	25	75	100
	Allied Chemistry II Practical	1	2	3	25	75	100
IV	SEC-6 - Materials Science (or) Agricultural Physics	2	2	3	25	75	100
1,4	SEC-7 – -Lasers And Fiber Optics (or) Geo Physics	2	2	3	25	75	100
	Semester Total	23	32	-	200	600	800

	SEMESTER V						
	Title of the component and Paper	Cuadia	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Credit	/week	Hrs	CIA	U E	Total
	Core IX Atomic Physics and Lasers	3	4	3	25	75	100
	Core X Relativity and Quantum Mechanics	3	4	3	25	75	100
	Core XI Electricity, Magnetism and	3	4	3	25	75	100
III	Electromagnetism						
	Core XII- Practical V	3	3	3	25	75	100
	Core XIII Project with viva voce	4	5	3	25	75	100
	Elective V - Digital Electronics and	3	4	3	25	75	100
	Microprocessor 8085						
	Elective VI - Choose any one from Discipline	3	4	3	25	75	100
	Specific Elective - Energy Physics (or)						
	Mathematical Physics						
		_		_			
	Value Education	2	2	3	25	75	100
IV	Summer Internship / Industrial Training	2	0	3	100	-	100
	(Carried out in II year Summer vacation) -30						
	hours duration.						
	Semester Total	26	30	-	275	525	800

	SEMESTER VI						
	Title of the component and Paper	Credit	Ins. Hrs	Exam	Ma	x. M	arks
Part	Study Components & Title of the Paper	Credit	/week	Hrs	CIA	U E	Total
	Core XIV Nuclear and Particle Physics	4	6	3	25	75	100
	Core XV Solid State Physics	4	6	3	25	75	100
	Core XII- Practical IV	4	6				
III	Elective VII Choose any one from Discipline	3	5	3	25	75	100
	Specific Elective - Digital Photography (or)						
	Principles Of Programming Concepts And C						
	Elective VIII - Choose any one Course from	3	5	3	25	75	100
	Discipline Specific Elective- Communication						
	Systems (or)						

	Advanced Mathematical Physics						
	Extension Activity	1	0	3	100	-	100
IV	Professional Competency Skill	2	2	3	100	-	100
	Semester Total	21	30	-	325	375	700

SEMESTER I

COURSE	FIRST SEMESTER - FOUNDATION COURSE				
COURSE TITLE	INTRODUCTORY PHYSICS				
CREDITS	2	Inst. Hours	2 hours		
COURSE	To help students get an overview of	of Physics before 1	earning their		
OBJECTIVES	core courses. To serve as a bridge between the school curriculum				
	and the degree programme.				

UNITS	COURSE DETAILS
UNIT-I	Vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	Different types of forces—gravitational, electrostatic, magnetic, electromagnetic, nuclear —mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	Different forms of energy—conservation laws of momentum, energy—types of collisions—angular momentum—alternate energy sources—real life examples
UNIT-IV	Types of motion— linear, projectile, circular, angular, simple harmonic motions — satellite motion — banking of a curved roads — stream line and turbulent motions — wave motion — comparison of light and sound waves — free, forced, damped oscillations
UNIT-V	Surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
TEXT BOOKS	 D.S.Mathur, 2010, Elements of Properties of Matter,S. Chand & Co BrijLal & N. Subrahmanyam, 2003, Properties of Matter,S. Chand & Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chand & Co.
WEBLINKS	http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/ https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/

COURSEOUTCOMES:

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSE OUTCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

COURSE	FIRST SEMESTER -CORE					
COURSETITLE	PROPERTIES OF M	PROPERTIES OF MATTER AND SOUND				
CREDITS	4	Inst. Hours	5 hours			
COURSE	Study of the properties of matter leads to information which is of					
OBJECTIVES	practical value to both the physicist and the engineers. It gives us					
	information about the internal forces which act between the					
	constituent parts of the substance. Students who undergo this course					
	are successfully bound	d to get a better insight	and understanding of			
	the subject.		_			

UNITS	COURSEDETAILS
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)
UNIT-II	BENDING OF BEAMS: cantilever— expression for Bending moment— expression for depression at the loaded end of the cantilever— oscillations of a cantilever— expression for time period— experiment to find Young's modulus—non-uniform bending— experiment to determine Young's modulus by Koenig's method—uniform bending— expression for elevation—experiment to determine Young's modulus using microscope
UNIT-III	FLUID DYNAMICS: Surface tension: definition – molecular forces—excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity: definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature
UNIT-IV	WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings – sonometer – determination of AC frequency using sonometer – determination of frequency using Melde's string apparatus

	ACOUSTICS OF BUILDINGS AND ULTRASONICS:					
	Intensity of sound – decibel – loudness of sound –reverberation –					
UNIT-V	Sabine's reverberation formula – acoustic intensity – factors affecting the					
01,121	acoustics of buildings. <i>Ultrasonic waves</i> : production of ultrasonic waves–					
	Piezoelectric crystal method-magnetostriction effect – application of					
	ultrasonic waves					
	1. D.S.Mathur, 2010, Elements of Properties of Matter, S. Chand & Co.					
	2. BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S.Chand & Co					
TEXT BOOKS	3. D.R.Khanna & R.S.Bedi, 1969, Textbook of Sound, Atma Ram & sons					
	4. BrijLal and N. Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House.					
	5. R.Murugesan, 2012, Properties of Matter, S.Chand& Co.					
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers					
DEEEDENGE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth					
REFERENCE	edition,R. Chand & Co.					
BOOKS	3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics,					
	Arnold -Heinmann India.					
	1. <a hbase="" href="https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-do-do-do-do-do-do-do-do-do-do-do-do-</th></tr><tr><th></th><td>they-work</td></tr><tr><th></th><td>2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html					
	3. https://www.youtube.com/watch?v=gT8Nth9NWPM					
WEBLINKS	4. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s					
	5.					

At the end of the course, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.
	CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.
	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.
COURSE OUTCOMES	CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains
	CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3-point scale of STRONG(S), MEDIUM(M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	M	S	M	S
CO2	M	S	S	S	M	M	S	M	S	S
CO3	S	M	S	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	M	M	M
CO5	M	M	S	S	M	S	S	S	S	M

COURSE	FIRST SEMESTER - CORE			
COURSE TITLE	CORE PRACTICAL	S		
CREDITS	4	Inst. Hours	3 hours	
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of matter, set up experimentation to verify theories, quantify and analyse, able			
	to do error analysis an	d correlate results		

Properties of Matter (Minimum TEN Experiments)

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale & telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension & interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

COURSE	SECOND SEMESTER - CORE						
COURSETITLE	Heat, Thermodynamics and Statistical Physics – Core 3						
CREDITS	4 Inst. Hours 5 hours						
COURSE OBJECTIVES	temperature in Celsius exhibition and explan- conductor. Relate the	understand a basic in co s, Kelvin and Fahrenhei ation of transmission of laws of thermodynamic nowledge of statistical m	t scales. Practical heat in good and bad s, entropy in everyday				

UNITS	COURSE DETAILS
UNIT-I	CALORIMETRY: specific heat capacity – specific heat capacity of gases C _P and C _V – Meyer's relation – Joly's method for determination of C _V – Regnault's method for determination of C _P LOW TEMPERATURE PHYSICS: Joule-Kelvin effect – porous plug
01,22	experiment – Joule-Thomson effect –Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of thermodynamics
UNIT-II	- P-V diagram - heat engine -efficiency of heat engine - Carnot's engine, construction, working and efficiency of petrol engine and diesel
	engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics –entropy of
	an ideal gas – entropy change in reversible and irreversible processes –
	T-S diagram -thermodynamical scale of temperature - Maxwell's
UNIT-III	thermodynamical relations – Clasius - Clapeyron's equation (first latent
	heat equation) – third law of thermodynamics – un attainability of
	absolute zero – heat death. HEAT TRANSFER: modes of heat transfer: conduction, convection
	and radiation.
	Conduction: thermal conductivity – determination of thermal
	conductivity of a good conductor by Forbe's method – determination of
UNIT-IV	thermal conductivity of a bad conductor by Lee's disc method.
	Radiation: black body radiation (Ferry's method) – distribution of energy
	in black body radiation – Wien's law and Rayleigh Jean's law –Planck's
	law of radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.
	STATISTICAL MECHANICS: definition of phase-space – micro and
	macro states – ensembles –different types of ensembles – classical and
UNIT-V	quantum Statistics – Maxwell-Boltzmann statistics – expression for
UNII-V	distribution function – Bose-Einstein statistics – expression for
	distribution function – Fermi-Dirac statistics –expression for distribution
1	function – comparison of three statistics.
	1. Brijlal & N. Subramaniam, 2000, Heat and Thermodynamics, S. Chand &Co.
	2. Narayanamoorthy & KrishnaRao, 1969, Heat, Triveni Publishers, Chennai.
TEXT BOOKS	3. V.R.Khanna&R.S.Bedi, 1998 1 st Edition, Text book of Sound, Kedharnaath
DOORS	Publish & Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and Oscillations, Vikas Publishing House, New Delhi.
	1 uonsining mouse, new Deim.

	5. Ghosh, 1996, Text Book of Sound, S.Chand & Co.6. R.Murugeshan & Kiruthiga Sivaprasath, Thermal Physics, S.Chand & Co.
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson.
WEB LINKS	1. https://youtu.be/M_5KYncYNyc 2. https://www.youtube.com/watch?v=4M72kQulGKk&vl=en

At the end of the course, the student will be able to:

COURSEOUT COMES	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity, superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy
	CO4	Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them
	CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-Dirac. Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3-point scale of STRONG(**S**), MEDIUM (**M**) and LOW (**L**).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

SECOND SEMESTER - CORE				
CORE PRACTICALS				
4	Practical Hours	3 hours		
Apply their knowledge gained about the concept of heat and sound				
waves, resonance, calculate frequency of ac mains set up				
experimentation to verify theories, quantify and analyse, able to do				
error analysis and corre	elate results			
	Apply their knowledge waves, resonance, calc experimentation to veri error analysis and corre	CORE PRACTICALS 4 Practical Hours Apply their knowledge gained about the concept waves, resonance, calculate frequency of ac ma		

HEAT, OSCILLATIONS, WAVES & SOUND (Minimum TEN of the given list)

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

COURSE	THIRD SEMESTER - CORE				
COURSETITLE	GENERAL MECHANICS AND CLASSICAL MECHANICS				
CREDITS	4 Inst. Hours 4 hours				
COURSE	This course allows the students: To have a basic understanding of				
OBJECTIVES	the laws and principles of mechanics; To apply the concepts of				
	forces existing in the system; To understand the forces of physics in				
	everyday life; To visualize conservation laws; To apply Lagrangian				
	equation to solve com	plex problems.			

UNITS	COURSEDETAILS
	LAWS OF MOTION: Newton's Laws- forces - equations of
	motion - frictional force - motion of a particle in a uniform
	gravitational field – types of everyday forces in Physics.
UNIT-I	Gravitation: Classical theory of gravitation – Kepler's laws,
UNII-I	Newton's law of gravitation - Determination of G by Boy's
	method – Earth-moon system – weightlessness – earth satellites –
	parking orbit – earth density – mass of the Sun – gravitational
	potential - velocity of escape - satellite potential and kinetic

	energy –Einstein's theory of gravitation – introduction –principle
	of equivalence – experimental tests of general theory of relativity –
	gravitational red shift.
	CONSERVATION LAWS OF LINEAR AND ANGULAR
	MOMENTUM: conservation of linear and angular momentum –
	Internal forces and momentum conservation – center of mass –
LINIT II	examples – general elastic collision of particles of different masses
UNIT-II	– system with variable mass – examples – conservation of angular
	momentum – torque due to internal forces – torque due to gravity –
	angular momentum about center of mass - proton scattering by
	heavy nucleus.
	CONSERVATION LAWS OF ENERGY: Introduction –
	significance of conservation laws – law of conservation of energy
	concepts of work- power – energy – conservative forces – potential
UNIT-III	energy and conservation of energy in gravitational and electric field
	– examples –non-conservative forces – general law of conservation
	of energy.
	RIGID BODY DYNAMICS: translational and rotational motion –
	angular momentum - moment of inertia - general theorems of
UNIT-IV	moment of inertia – examples – rotation about fixed axis – kinetic
UNII-IV	energy of rotation – examples – body rolling along a plane surface
	- body rolling down an inclined plane - gyroscopic precision -
	gyrostatic applications.
	LAGRANGIAN MECHANICS: generalized coordinates –
LINIT V	degrees of freedom – constraints - principle of virtual work and D'
UNIT-V	Alembert's Principle –Lagrange's equation from D' Alembert's
	principle – application –simple pendulum.
	1. J.C. Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing
	house, Mumbai.
	2. P. Durai Pandian, Laxmi Durai Pandian, Muthamizh Jaya pragasam,
	2005, Mechanics, 6 th revised edition, S.Chand & Co.
TEXT BOOKS	3. D. S. Mathur & P. S. Hemne, 2000, Mechanics, Revised Edition, S. Chand & Co.
	4. Narayanamurthi, M. & Nagarathnam. N, 1998, Dynamics. The
	National Publishing, Chennai.
	5. Narayanamurthi, M and Nagarathnam, N, 1982, Statics, Hydrostatics
	and Hydrodynamics, The National Publishers, Chennai.
	1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and
	Wesely.
REFERENCE	2. Halliday, David & Robert, Resnick, 1995, Physics Vol.I. New
BOOKS	Age, International, Chennai.
	3. Halliday, David Robert Resnick and Walker Jearl, 2001,
	Fundamentals of Physics, John Wiley, New Delhi 1. https://youtu.be/X4 K-XLUIB4
	1. <u>https://youtu.be/X4_K-XLUIB4</u> 2. <u>https://nptel.ac.in/courses/115103115</u>
	3. https://www.youtube.com/watch?v=p075LPq3Eas
WEB LINKS	4. https://www.youtube.com/watch?v=mH pS6fruyg
	5. https://onlinecourses.nptel.ac.in/noc22 me96/preview
	6. https://www.youtube.com/watch?v=tdkFc88Fw-M
	7. https://onlinecourses.nptel.ac.in/noc21_me70/preview

At the end of the course, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion
	CO2	Acquire the knowledge on the conservation laws
COURSEOUT COMES	CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) in the 3-point scale of STRONG (**S**), MEDIUM (**M**) and LOW (**L**).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	M	S	S
CO2	S	S	S	M	S	M	S	S	S	M
CO3	S	S	S	S	S	S	M	S	M	S
CO4	M	S	S	S	M	S	S	M	S	S
CO5	S	S	M	S	S	M	S	S	S	M

COURSE	THIRD SEMESTER - CORE				
COURSETITLE	CORE PRACTICALS				
CREDITS	4	Practical Hours	3 hours		
COURSE	Construct circuits to learn about the concept of electricity, current,				
OBJECTIVES	resistance in the path of current, different parameters that affect a				
	circuit. Set up experiments, observe, analyse and assimilate the concept				
	ELECTRICITY (Minimum TEN of the given list)				

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire using PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G / Spot galvanometer/ head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

COURSE	FOURTH SEMESTER - CORE						
COURS ETITLE	OPTICS AND SPEC	OPTICS AND SPECTROSCOPY					
CREDITS	4 Lecture Hours 5 hours						
COURSE OBJECTIVES	phenomena in geome behaviour of light in differences in the diffraction and Polarizalife; To understand the minims aberrations; T	oth understanding of the trical and wave option different mediums; important phenomena exation and apply the known decign of optical systems of solve problems in our and performing numbers.	cs; To explain the To understand the namely interference, owledge in day to day stems and methods to ptics by selecting the				

UNITS	COURSEDETAILS
	LENS AND PRISMS: postulates of geometrical optics – thick and
	thin lenses – focal length, critical thickness, power and cardinal
	points of a thick lens.
	Lens: lens makers formula (no derivation) – aberrations: spherical
	aberration, chromatic aberrations, coma and astigmatism– curvature
	of the field – distortion – chromatic aberrations methods.
	<i>Prism</i> : dispersion, deviation, aberrations - applications rainbows and
UNIT-I	halos, constant deviation spectroscope.
	Eyepieces: advantage of an eyepiece over a simple lens – Huygen's
	and Ramsden's eyepieces, construction and working –merits and
	demerits of the eyepiece.
	Resolving power: Rayleigh's criterion for resolution – limit of
	resolution for the eye – resolving power of, (i) Prism (ii) grating (iii)
	telescope
	INTERFERENCE: division of wave front, Fresnel's biprism –
	fringes with white light – division of amplitude: interference in thin
	films due to, (i) reflected light, (ii) transmitted light – colours of thin
UNIT-II	films applications – air wedge – Newton's rings.
	Interferometers: Michelson's interferometer – applications, (i)
	determination of the wavelength of a monochromatic source of light,
	(ii) determination of the wavelength and separation D_1 and D_2 lines
	of sodium light, (iii) determination of a thickness of a mica sheet.
	DIFFRACTION: Fresnel's assumptions – zone plate – action of
	zone plate for an incident spherical wave front – differences between a zone plate and a convex lens –Fresnel type of diffraction –
	diffraction pattern due to a straight edge – positions of maximum and
UNIT-III	minimum intensities – diffraction due to a narrow slit – Fraunhofer
UN11-111	type of diffraction – Fraunhofer diffraction at a single slit – plane
	diffraction grating— experiment to determine wavelengths— width of
	principal maxima.
	POLARISATION: optical activity – optically active crystals –
UNIT-IV	polarizer and analyser—double refraction – optic axis, principal plane
	Huygens's explanation of double refraction in uniaxial crystals –
	Traybons a explanation of dodole ferraction in unitaxial crystals —

	polaroids and applications – circularly and elliptically polarized light
	-quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter – experiment to determine specific rotatory power.
UNIT-V	SPECTROSCOPY: infra-red spectroscopy near infra-red and far infra-red – properties –origin of IR spectra – IR spectrophotometer – applications interpretation of IR spectra – CH, CO, CN bending and stretching vibrational modes only – scattering of light – Raman effect –classical theory –quantum theory –mutual exclusion principle – Raman spectrometer- characteristics of Raman lines –applications.
TEXT BOOKS	 Subramaniam. N & Brijlal, 2014, Optics, 25th edition, S.Chand &Co. S.L.Gupta, V.Kumar & R.C.Sharma, 1997, Elements of Spectroscopy, 13th Edition, Pragati Prakashan, Meerut. G.Aruldhass, 2000, Molecular Structure and Spectroscopy, II edition. PHI Pvt Ltd, New Delhi. P.R.Sasikumar, 2012, Photonics, PHI Pvt Ltd, New Delhi. K.Rajagopal, 2008, Engineering Physics, PHI Pvt Ltd, New Delhi. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
REFERENCEB OOKS	 Agarwal B.S, 2011, Optics, Kedernath Ramnath Publishers, Meerut. Sathyaprakash, 1990, Optics, VII edition, Ratan Prakashan Mandhir, New Delhi. C.N.Banewell, 2006, Introduction to Molecular Spectroscopy, IV edition, TMH Publishing Co, New Delhi. Ajoy Ghatak, 2009, Optics, 4thedition, PHI Pvt Ltd, New Delhi. Singh & Agarwal, 2002, Optics and Atomic Physics, 9thedition, Pragati Prakashan Meerut. D.Halliday, R.Resnick and J. Walker, 2001, Fundamentals of Physics,6th edition, Willey, New York. Jenkins A. Francis & White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill Inc., NewDelhi.
WEBLINKS	 https://science.nasa.gov/ems/ https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo 7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472 https://science.nasa.gov/ems/ https://science.nasa.gov/ems/ https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo 7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472 https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/ http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/

At the end of the course, the student will be able to:

COURSEOU	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces
TCOMES	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer

CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments
CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
CO5	Relate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	M	M	M	S	S	M	M
CO2	M	S	M	S	M	S	M	M	S	S
CO3	S	M	S	S	S	M	S	S	M	M
CO4	S	M	S	M	M	S	M	M	S	M
CO5	S	M	S	M	S	S	M	S	S	S

COURSE	FOURTH SEMESTER - CORE			
COURSE TITLE	CORE PRACTICALS			
CREDITS	4 Practical Hours 3 hours			
COURSE OBJECTIVES	Demonstrate various optical phenomena principles, working, apply with various materials and interpret the results.			
LIGHT (Minimum TEN of the given list)				

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searles goniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determination of wire using Laser.

COURSE	FIFTH SEMESTER - CORE				
COURSE TITLE	ATOMIC PHYSICS AND LASERS				
CREDITS	5 Lecture Hours 5 hours				
COURSE OBJECTIVES	To gain knowledge on ph To solve problems based To make students under numbers, coupling sche electrons; To gain knowledge on spectral lines in magnetic	on Einstein's photoelectristand the development of mes and analysis of material excitation and ionization	ic equation; atom models, quantum agnetic moments of an potentials, splitting of		

UNITS	COURSE DETAILS
UNIT-I	THE ELECTRON AND POSITIVE RAYS: e/m of electron by Dunnington's method –charge of electron by Millikan's oil drop method – properties of positive rays –e/m of positive rays by Thomson's parabola method (problems calculation of e/m ratio of positive rays)—mass spectrographs and uses—Bainbridge and Dempster's mass spectrographs
UNIT-II	PHOTOELECTRIC EFFECT: photoelectric emission – Leonard's experiment – Richardson and Compton experiment – laws of photoelectric emission – Einstein's photoelectric equation (problems using Einstein's photoelectric equation) – experimental verification by Millikan's method – photoelectric cell – photo emissive cell – photovoltaic cell – photo conducting cell – applications of photoelectric cells – photomultiplier.
UNIT-III	ATOMIC STRUCTURE: Sommerfield's relativistic atom model –vector atom model –various quantum numbers – L-S and J-J coupling – Pauli's exclusion principle –magnetic dipole moment of an electron due to orbital and spin motion – Bohr magneton - Stern and Gerlach experiment – Lande 'g' factor.
UNIT-IV	SPLITTING OF SPECTRAL LINES: excitation, ionisation and critical potentials – Davis and Goucher's method – optical spectra – spectral notation and selection rules – fine structure of sodium D-line – Zeeman effect – experimental arrangement and classical theory of normal Zeeman effect – Larmor's theorem –quantum theory of normal Zeeman effect –anomalous Zeeman effect – explanation of splitting of D ₁ and D ₂ lines of sodium – Paschen Back effect - Stark effect (Qualitative only).
UNIT-V	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – semiconductor laser –laser applications–holography.
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand & Co. (All units) (Units I & II-Problems) Brijlal & N. Subrahmanyam, Atomic & Nuclear Physics, S. Chand & Co. (All units)

	3. J. B. Rajam, Modern Physics, S. Chand & Co.
	4. Sehgal Chopra, Modern Physics, Sultan Chand, New Delhi
	5. Avadhahnulu, An Introduction to Lasers - Theory and Applications,
	M.N., S.Chand & Co., New Delhi, 2001.
	1. Perspective of Modern Physics, Arthur Beiser, McGraw Hill.
REFERENCE	2. Modern Physics, S. Ramamoorthy, National Publishing & Co.
BOOKS	3. Laser and Non-Linear Optics by B.B.Laud, Wiley Eastern Ltd., New
	York,1985.
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
	2. https://makingphysicsfun.files.wordpress.com/2015/01/photoelectric-
	<u>effect.pptx</u>
WEBLINKS	3. https://www.khanacademy.org/science/physics/quantum-physics/in-in-
	nuclei/v/types-of-decay
	4. https://www.khanacademy.org/science/in-in-class-12th-physics-
	india/nuclei

At the end of the course, the student will be able to:

	CO1	List the properties of electrons and positive rays, define specific charge of positive rays, know different mass spectrographs.
COURSE	CO2	Outline photo electric effect and the terms related to it, State laws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation.
		Explain different atom models, Describe different quantum numbers and different coupling schemes.
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, Apply selection rule, Analyse Paschen-Back effect, Compare Zeeman and Stark effect.
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	M	S	S	S
CO4	M	S	S	S	S	M	S	M	M	M
CO5	S	M	S	S	M	S	S	M	M	S

COURSE	FIFTH SEMESTER – CORE X						
COURSETITLE	RELATIVITY AND	RELATIVITY AND QUANTUM MECHANICS					
CREDITS	5	Lecture Hours	5				
COURSE OBJECTIVES	consequences. To learn the importar differentiate between sp To interpret the wave experimental evidences. To derive and use Sch various operators.	arodinger's wave equation wave equation for simple	equations and also to f relativity. various theoretical and n and also learn about				

UNITS	COURSE DETAILS
UNIT-I	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment–frames of reference – Galilean Relativity – postulates of special theory of relativity – Lorentz transformation – consequences – time dilation–concept of simultaneity – Doppler effect – length contraction–variation of mass with velocity – Einstein's mass-energy relation– relativistic momentum – energy relation
UNIT-II	TRANSFORMATION RELATIONS: transformation of velocity, mass, energy and momentum – four vector – invariance under transformation – Lorentz transformation and velocity addition equations in terms of hyperbolic functions. GENERAL THEORY OF RELATIVITY: Inertial and Gravitational mass – Principle of equivalence – Experimental evidences for General theory of Relativity
UNIT-III	PHOTONS AND MATTER WAVES: difficulties of classical physics and origin of quantum theory –black body radiation – Planck's law – Einstein's photoelectric equation –Compton effect – pair production – De Broglie waves – phase velocity and group velocity– Davisson and Germer's experiment –uncertainty principle – consequences –illustration of Gamma ray microscope.
UNIT-IV	OPERATORS AND SCHRÖDINGER EQUATION: postulates of quantum mechanics – Wave function and its interpretation – Schrödinger's equation – linear operators – Eigen value – Hermitian operator – properties of Hermitian operator – observable – operators for position, linear Momentum, angular momentum components – commutator algebra –commutator between these operators – expectation values of position and momentum – Ehrenfest theorem.
UNIT-V	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE PROBLEMS: one-dimensional problems: (i) particle in a box, (ii) barrier penetration problem – quantum mechanical tunneling, (iii) linear harmonic oscillator. higher dimensional problems: (i) Rigid rotator (qualitative),(ii) Hydrogen atom (qualitative).

	and the control of th
TEXT BOOKS	 Special Theory of Relativity, S.P.Puri, Pearson Education, India, 2013 Concepts of Modern Physics, A.Beiser, 6th Ed., McGraw-Hill, 2003. Modern Physics, R. Murugeshan, Kiruthiga Sivaprasath, S. Chand & Co., 17th Revised Edition, 2014. Quantum Mechanics, S.P.Singh, M.K.Bagde, S.Chand & Co., New Delhi, 2000. Quantum Mechanics in Physics and Chemistry with Applications to Biology, Rabi Majumdar, PHI, 2011. Modern Physics, R. Murugesan, S.Chand & Co., New Delhi. Quantum Mechanics, Gupta, Kumar and Sharma. Jai Prakash Nath & Co Meerut Quantum mechanics – Satyaprakash and Swati Saluja. Kedar Nath Ram Nath & Co.
REFERENCE BOOKS	 Fundamentals of Modern Physics, Peter J. Nolan, 1stEdition, 2014, by Physics Quantum Mechanics, V.Murugan, Pearson Education, India, 2014. Quantum Mechanics, Alastair I. M. Rae and Jim Napolitano, 6th Edition, CRC Press: Taylor & Francis, 2010. Quantum Physics: A Fundamental Approach to Modern Physics, John S. Townsend, University Science Books, Sausalito, California, 2010. Quantum Mechanics: Theory and Applications, Ajoy Ghatak and S. Lokanathan, Springer Science Business Media, Netherlands, 2004. Physics of the Atom, Editor(s): M. R. Wehr, J. A. Richards, T. W. Adair, 4th Edition, Narosa, 2013. Quantum Mechanics, V.Devanathan, Narosa Pub.House, Chennai,2005 Quantum Mechanics, V.K.Thangappan, New Age International, New Delhi. A Text Book of Quantum Mechanics, Mathews & Venkatesan, Tata McGraw Hill, New Delhi. Quantum Mechanics, Ghatak & Loganathan, Macmillan Publications. Introduction to Quantum Mechanics, Pauling & Wilson, McGraw Hill Co., New York. Quantum Mechanics, Gupta, Kumar and Sharma. Jai Prakash Nath & Co Meerut
WEBLINKS	 http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html https://swayam.gov.in/nd2_arp19_ap83/preview https://swayam.gov.in/nd1_noc20_ph05/preview https://www.khanacademy.org/science/physics/special-relativity/minkowski-spacetime/v/introduction-to-special-relativity-and-minkowski-spacetime-diagrams

At the end of the course, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.
COURSEO	CO2	Appreciate the importance of transformation equations and also the general theory of relativity
UTCOMES	CO3	Realise the wave nature of matter and understand its importance
	CO4	Derive Schrodinger equation and also realize the use of operators.
	CO5	Apply Schrödinger equation to simple problems.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	M	S	S	M	S	S	S
CO4	M	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	FIFTH SEMESTER – CORE XI							
COURSETITLE	ELECTRICITY, MAGNETISM AND							
	ELECTROMAGNETISM							
CREDITS	4 Lecture Hours 5 hours							
COURSE	To classify materials based on their electrical and magnetic properties. To							
OBJECTIVES	analyse the working principles of electrical gadgets.							
	To understand the behaviour of dc, ac and transient currents.							
	To know about the communication by electromagnetic waves.							

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: capacitor -
	principle – capacitance of spherical and cylindrical capacitors –
	capacitance of a parallel plate capacitor (with and without dielectric slab) – effect of dielectric –Carey Foster bridge – temperature
UNIT-I	coefficient of resistance – Seebeck effect – laws of thermo emf – Peltier
	effect - Thomson effect - thermoelectric diagrams -uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
UNIT-II	solenoid – Helmholtz tangent galvanometer –force on a current element by magnetic field – force between two infinitely long conductors –
UNII-II	torque on a current loop in a field - moving coil galvanometer -
	damping correction – Ampere's circuital law – differential form –
	divergence of magnetic field – magnetic induction due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	magnetic induction B – magnetization M - relation between B, H and M
	- magnetic susceptibility - magnetic permeability - experiment to draw
	B-H curve – energy loss due to hysteresis - Importance of hysteresis
UNIT-III	curves – Faraday and Lenz laws –vector form – self-induction – coefficient of self-inductance of solenoid – Anderson's method –
	mutual induction – coefficient of mutual inductance between two
	coaxial solenoids – coefficient of coupling - earth inductor-
	determination of angle of $dip(\Phi)$
	TRANSIENT AND ALTERNATING CURRENTS: growth and
	decay of current in a circuit containing resistance and inductance –
UNIT-IV	growth and decay of charge in a circuit containing resistance and
01,1111,	capacitor – growth and decay of charge in an LCR circuit (expressions
	for charge only) – peak, average and rms values of ac – LCR series and parallel circuits – resonance condition – Q factor – power factor.
	parametericulus – resonance condition – Q factor – power factor.

	MAXWELLS EQUATIONS AND ELECTROMAGNETIC						
	WAVES: Maxwell's equations in vacuum, material media- physical						
UNIT-V	significance of Maxwell's equations –displacement current – plane						
UNII-V	electromagnetic waves in free space – velocity of light – Poynting						
	vector-electromagnetic waves in a linear homogenous media –						
	refractive index.						
	1. Murugeshan. R., - Electricity and Magnetism, 8 th Edn, 2006, S.Chand						
	and Co, New Delhi.						
	2. Sehgal D.L., Chopra K.L, Sehgal N.K., - Electricity and Magnetism,						
TEXT	3. Sultan Chand and Sons, New Delhi.						
BOOKS	4. M. Narayanamurthy and N. Nagarathnam, Electricity and Magnetism,						
	4th Edition.						
	5. National Publishing Co., Meerut.						
	1. 1. Brijlal and Subramanian, Electricity and Magnetism, 6th Edn.,						
	Ratan and Prakash, Agra.						
	2. Brijlal, N.Subramanyan and Jivan Seshan, Mechanics and						
	Electrodynamics (2005),						
REFERENCE	3. Eurasia Publishing House (Pvt.) Ltd., New Delhi.						
BOOKS	4. David J. Griffiths, Introduction to Electrodynamics, 2 nd Edn. 1997,						
	Prentice Hall of						
	5. India Pvt. Ltd., New Delhi						
	6. D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics,						
	6 th Edn., Wiley, NY, 2001.						
	8. https://www.edx.org/course/electricity						
WEB	9. https://www.udemy.com/courses/ electricity						
RESOURCES	10. https://www.edx.org/course/magnetism						
	11. http://www.hajim.rochester.edu/optics/undergraduate/courses.html						

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.
	CO2	Apply Biot and Savart law to study the magnetic effect of electric
		current.
	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
COURSE	CO4	Analyze the time variation of current and potential difference in AC
OUTCOMES		circuits.
	CO5	Relate different physical quantities used to explain magnetic
		properties of materials.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3-point scale of STRONG **(S)**, MEDIUM **(M)** and LOW **(L)**.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

COURSE	FIFTH SEMESTER - CORE					
COURSETITLE	CORE PRACTICALS					
CREDITS	4 Practical hours 6 hours					
COURSE	Demonstrate various optical phenomena principles, working, apply with					
OBJECTIVES	various materials and interpret the results.					
Duratical V (Minimum Tryalva of the given list)						

- **Practical V** (Minimum **Twelve** of the given list)
- 1. Spectrometer-diffraction grating -Normal incidence-determination of dispersive power
- 2. Spectrometer-solid prism- determination of dispersive power
- 3. Specific rotation of sugar solution polarimeter.
- 4. Bi-prism Determination of refractive index.
- 5. Thickness of a thin film Bi-prism
- 6. Brewster's law verification-polarization
- 7. Diffraction at straight edge-Air wedge-determination of thickness of wire.
- 8. Forbe's method Thermal conductivity of a metal rod.
- 9. Spectrometer—Grating Normal incidence Wave length of Mercury spectral lines.
- 10. Spectrometer Grating Minimum deviation Wave length of Mercury spectral lines.
- 11. Spectrometer (i-d) curve.
- 12. Spectrometer (i-i') curve.
- 13. Spectrometer Narrow angled prism.
- 14. Spectral response of photo conductor (LDR).
- 15. Potentiometer Resistance and Specific resistance of the coil.
- 16. Potentiometer E.M.F of a thermocouple.
- 17. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 18. Vibration magnetometer Determination of $B_{\rm H}$ using circular coil carrying current– Tan B position.
- 19. B.G Figure of Merit Charge Sensitivity
- 20. B.G Comparision of coefficient of mutual inductance of coils
- 21. B.G Internal resistance of a cell.

COURSE	FIFTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE		
COURSE TITLE	DIGITAL ELECTRO	ONICS AND MICROP	ROCESSOR 8085
CREDITS	3	Lecture Hours	4
COURSE OBJECTIVES	digital circuits for addition	nber systems, Boolean alge on and subtraction, flip-flo fundamentals of 8085 arc s.	ps, registers, counters.

UNITS	COURSE DETAILS
UNIT-I	decimal, binary, octal, hexadecimal numbers systems and their conversions—codes: BCD, gray and excess-3 codes — code conversions —complements (1's, 2's) —binary addition, binary subtraction using 1's & 2's complement methods — Boolean laws — De-Morgan's theorem —basic logic gates -universal logic gates (NAND & NOR) —standard representation of logic functions (SOP & POS) — minimization techniques (Karnaugh map: 2, 3, 4 variables).
UNIT-II	adders, half &full adder –subtractors, half & full subtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) & demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to-8-line), BCD to seven segment decoder.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit ˚ counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND & NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit & 16-Bit), subtraction (8-Bit & 16-Bit), multiplication (8-Bit), division (8-Bit) – largest and smallest number in an array – BCD to ASCII
	and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
TEXT BOOKS	 M.Morris Mano, "Digital Design" 3rd Edition, PHI, NewDelhi. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV) S.Salivahana & S. Arivazhagan-Digital circuits and design Microprocessor Architecture, Programming and Applications with the 8085 – Penram International Publishing, Mumbai Ramesh S.Gaonakar Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA

REFERENCE BOOKS	 Herbert Taub and Donald Schilling. "Digital Integrated Electronics". McGraw Hill. 1985. S.K. Bose. "Digital Systems". 2/e. New Age International. 1992. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters: Fundamentals & Applications". TMH.1994. Malvino and Leach. "Digital Principles and Applications". TMG HillEdition
	5. Microprocessors and Interfacing – Douglas V.Hall6. Microprocessor and Digital Systems – Douglas V.Hall
WEBLINKS	1. https://youtu.be/-paFaxtTCkI 2. https://youtu.be/s1DSZEaCX_g

COURSE	SIXTH SEMESTER – CORE			
COURSE TITLE	NUCLEAR AND PARTICLE PHYSICS			
CREDITS	4 Lecture Hours 6			
COURSE OBJECTIVES	To give reason for radio To learn about the princi To acquire knowledge of applications. To know the reason for or the second s	nts, properties and models activity and study their proples of various particle detendifferent types of nuclear cosmic rays and their effectlassification of elementary	perties. sectors and accelerators. r reactions and their st on the surface of earth	

UNITS	COURSE DETAILS
	PROPERTIES OF NUCLEUS: constituents of nucleus – isotopes,
	isobars, isotones – nuclear size, mass, density, charge, spin, angular
	momentum, magnetic dipole moment, electric quadrupole moment
UNIT-I	(qualitative) – binding energy – mass defect – packing fraction –
UNII-I	nuclear stability - binding energy per nucleon graph - properties of
	nuclear force – meson theory of nuclear forces – Yukawa potential.
	NUCLEAR MODELS: liquid drop model -Weizacker's semi-
	empirical mass formula – shell model – magic numbers.
	RADIO ACTIVITY: radio activity – laws of radioactivity –
	radioactive disintegration, decay constant, half-life, mean-life (only
	final formulae) – units of radioactivity-successive disintegration –
LINITE II	transient and secular equilibrium- properties of alpha, beta and gamma
UNIT-II	rays – Geiger-Nuttal law – α -ray spectra –Gammow's theory of α -decay
	(qualitative) $-\beta$ -ray spectrum – neutrino theory of β -decay – nuclear
	isomerism – K-shell capture – internal conversion – non-conservation
	of parity in weak interactions.
	PARTICLE DETECTORS AND ACCELERATORS
	DETECTORS: gas detectors –ionization chamber – G-M counter –
	scintillation counter – photo multiplier tube (PMT) – semiconductor
UNIT-III	detectors – neutron detector.
	ACCELERATORS: linear accelerators – cyclotron – synchrotron –
	betatron– electron synchrotron – proton synchrotron (bevatron)
	NUCLEAR REACTIONS: types of nuclear reactions –conservation
	laws in nuclear reaction – Q-value– threshold energy – nuclear fission –
UNIT-IV	energy released in fission - chain reaction - critical mass - nuclear
	reactor – nuclear fusion – sources of stellar energy – proton-proton
	cycle – Carbon-Nitrogen cycle – thermonuclear reactions – controlled
	thermonuclear reactions.
	COSMIC RAYS: discovery of cosmic rays – primary and secondary
UNIT-V	cosmic rays – cascade theory of cosmic ray showers–altitude and
	latitude effects –discovery of positron – pair production– annihilation
	of matter – Van-Allen radiation belts – big-bang theory – future of the
	Universe (elementary ideas only). ELEMENTARY PARTICLES:
	particles and antiparticles—classification of elementary particles—types
	of fundamental interactions—quantum numbers of elementary particles—
	conservation laws and symmetry-quarks and types-quark
	model(elementary ideas only).

	1. R Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S. Chand &
	Co. (2013) 2. Brijlal& N. Subramaniyan, Atomic and Nuclear Physics S Chand &Co
TEXT BOOKS	3. J.B. Rajam, Modern Physics, S Chand &Co. Publishing Co.
	4. D.C. Tayal, Nuclear Physics, Himalayan Publishing House
	5. Atomic and Nuclear Physics, Brijlal & N.Subramaniyan, S.Chand & Co
	1. Basic ideas and concepts in Nuclear Physics, K.Heyde, 3 rd Edn., Institute
	of Physics Pub.
	2. Introductory nuclear Physics by Kenneth S.Krane (Wiley India P. Ltd, 2008)
	3. Concepts of nuclear physics by Bernard L. Cohen. (Tata Mc Graw Hill, 1998).
	4. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
	5. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
REFERENCE	6. Introduction to Elementary Particles, D. Griffith, John Wiley & Son
BOOKS	7. Quarks and Leptons, F.Halzen and A.D.Martin, Wiley India, New Delhi
	8. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
	9. Theoretical Nuclear Physics, J.M. Blatt & V.F. Weisskopf (Dover Pub.
	Inc., 1991)
	10. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).
	11. Nuclear Physics, S. N. Ghoshal, S Chand & Co. Edition 2003
	12. Elements of Nuclear Physics, M. L.Pandya & R. P. S.Yadav, KedarNath &
	Ram Nath
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html
WEBLINKS	2. https://www.kent.edu/physics/nuclear-physics-links
	3. https://www2.lbl.gov/abc/links.html

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1	Describe various models that explain about the nuclear structures
	CO2	Give reason for various kinds of radioactivity and also know laws governing them
	CO3	Know the principles and applications of various particle detectors and accelerators.
	CO4	Discuss the concepts used in nuclear reaction.
	CO5	Classify various elementary particles and study the effect of cosmic rays.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	()/		,	()						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	SIXTH SEMESTER – CORE			
COURSETITLE	SOLID STATE PHYSICS			
CREDITS	4 Lecture Hours 6			
COURSE OBJECTIVES	To give reason for radio: To learn about the princi To acquire knowledge o applications. To know the reason for o	nts, properties and models activity and study their proples of various particle det n different types of nuclear cosmic rays and their effectlassification of elementary	perties. sectors and accelerators. r reactions and their t on the surface of earth	

UNITS	COURSE DETAILS
UNIT-I	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of bonding – ionic bonding – bond energy of NaCl molecule –covalent bonding – metallic bonding – hydrogen bonding – Van-der-Waals bonding – crystal lattice – lattice translational vectors – lattice with basis – unit cell – Bravais' lattices – Miller indices – procedure for finding them –packing of BCC and FCC structures – structures of NaCl and diamond crystals –reciprocal lattice – reciprocal lattice vectors – properties – reciprocal lattices to SC, BCC and FCC structures – Brillouin zones – X-rays – Bragg's law(simple problems) – experimental methods: Laue method, powder method and rotating crystal method
UNIT-II	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and phonons: linear mono atomic and diatomic chains. acoustical and optical phonons –qualitative description of the phonon spectrum in solids – Dulong and Petit's Law – Einstein and Debye theories of specific heat of solids – T³ law (qualitative only)–properties of metals – classical free electron theory of metals (Drude-Lorentz) – Ohm's law – electrical and thermal conductivities – Weide mann-Franz' law –Sommerfeld's quantum free electron theory (qualitative only) – Einstein's theory of specific heat capacity.
UNIT-III	MAGNETIC PROPERTIES OF SOLIDS: permeability, susceptibility, relation between them — classification of magnetic materials — properties of dia, para, ferro, ferri and anti-ferromagnetism — Langevin's theory of diamagnetism — Langevin's theory of paramagnetism — Curie-Weiss law — Weiss theory of ferromagnetism (qualitative only) — Heisenberg's quantum theory of ferromagnetism — domains — discussion of B-H curve —hysteresis and energy loss — soft and hard magnets — magnetic alloys.
UNIT-IV	DIELECTRIC PROPERTIES OF MATERIALS: polarization and electric susceptibility –local electric field of an atom – dielectric constant and polarisability – polarization processes: electronic polarization– calculation of polarisability – ionic, orientational and space charge polarization –internal field – Clausius-Mosotti relation – frequency dependence of dielectric constant –dielectric loss – effect of temperature on dielectric constant – dielectric breakdown and its types – classical theory of electric polarisability –normal and anomalous dispersion – Cauchy and Sellmeir relations – Langevin-Debye equation – complex dielectric constant -optical phenomena.

	Application – plasma oscillations – plasma frequency –plasmons,
UNIT-V	FERROELECTRIC & SUPERCONDUCTING PROPERTIES OF MATERIALS: Ferroelectric effect: Curie-Weiss Law – ferroelectric domains, P-E hysteresis loop – elementary band theory: Kronig-Penny model – band gap (no derivation) – conductor, semiconductor (P and N type) and insulator –conductivity of semiconductor – mobility – Hall effect – measurement of conductivity (four probe method) - Hall coefficient. Superconductivity: experimental results –critical temperature –critical magnetic field – Meissner effect –type-I and type-II superconductors – London's equation and penetration depth – isotope effect – idea of BCS theory (no derivation)
TEXT BOOKS	 Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003). Solid state Physics, Rita John, 1st edition, TataMcGraw Hill publishers (2014). Solid State Physics, R L Singhal, Kedarnath Ram Nath& Co., Meerut (2003) Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning Solid-state Physics, H. Ibach and H. Luth, 2009, Springer Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House, ND
REFERENCE BOOKS	 Puri&Babber – Solid State Physics – S.Chand&Co. New Delhi. Kittel - Introduction to solid state physics, Wiley and Sons, 7th edition. Raghavan - Materials science and Engineering, PHI Azaroff - Introduction to solids, TMH S. O. Pillai - Solid State Physics, Narosa publication A.J. Dekker - Solid State Physics, McMillan India Ltd. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
WEBLINKS	1. https://nptel.ac.in/courses/115105099/ 2. https://nptel.ac.in/courses/115106061/

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSEO UTCOMES	CO1	Classify the bonding &crystal structure also learns about the crystal structure analysis using X ray diffraction.				
	CO2	Jnderstand the lattice dynamics and thus learn the electrical and hermal properties of materials.				
	CO3	Give reason for classifying magnetic material on the basis of their behaviour.				
	CO4	Comprehend the dielectric behavior of materials.				
	CO5	Appreciate the ferroelectric and super conducting properties of materials.				

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3-point scale of STRONG **(S)**, MEDIUM **(M)** and LOW **(L)**.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	M	S	M	S	M	M	S	M	M	M
CO3	S	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	M	S	S	M	M	M
CO5	S	M	M	S	S	M	S	M	M	S

COURSE	SIXTH SEMESTER	- CORE	
COURSETITLE	CORE PRACTICALS		
CREDITS	4	Practical Hours	6 hours
COURSE	To perform basic experiments on characteristics of electronic devices		
OBJECTIVES	and then get into the applications such as amplifiers, oscillators, counters and multivibrators.		
	To Perform fundamental experiments on microprocessor 8085 and		
	learn to write programs by themselves.		
Electronics (Minimum FIFTEEN of the given list)			
4 20 111	~= ' 11.01	, ,	

- 1. RC coupled CE transistor amplifier single stage.
- 2. Transistor Emitter follower.
- 3. Colpitt's oscillator -transistor.
- 4. Hartley oscillator transistor.
- 5. Astable multivibrator transistor.
- 6. Bistable multivibrator transistor.
- 7. FET (BFW10)- characteristics.
- 8. UJT (2N2646) -characteristics
- 9. AC circuits with L C R -Series resonance.
- 10. AC circuits with L C R Parallel resonance.
- 11. Op- amp inverting amplifier and summing, difference & average
- 12. Op- amp non-inverting amplifier and summing, difference & average
- 13. Op- amp differentiator & integrator.
- 14. Op- amp D/A converter by binary weighted resistor method.
- 15. 5V, IC 7805 Regulated power supply.
- 16. Study of gate ICs NOT, OR, AND, NOR, NAND, XOR & XNOR
- 17. Verification of De Morgan's theorem using ICs –NOT, OR, AND
- 18. NAND / NOR as universal building block.
- 19. Half adder / Half subtractor using basic logic gate ICs
- 20. Microprocessor 8085 addition, subtraction (8 bit only)
- 21. Microprocessor 8085 multiplication, division (8 bit only)
- 22. Microprocessor 8085 square (8 bit only)
- 23. Microprocessor 8085 square root (8 bit only)
- 24. Microprocessor 8085 largest/smallest of numbers (8 bit only)
- 25. Microprocessor 8085 –ascending/descending order

DISCIPLINE SPECIFIC CORE ELECTIVES

STUDENTS CAN CHOOSE ANY OF THESE SUBJECTS IN SEM V AND VI

	1. COMMUNIC	ATION PHYSICS			
Credits	3	Ins Hours	3		
		vledge on transmission and re-			
	ypes of communication like	fibre optic, radar, satellite, cell	ular		
UNITS		COURSE DETAILS			
UNIT-I	RADIO TRANSMISSION AND RECEPTION: transmitter — modulation types of modulation — amplitude modulation — limitations of amplitude modulation — frequency modulation — comparison of FM and AM — demodulation— essentials in demodulation— receivers: AM radio receivers— types of AM radio receivers— stages of superheterodyne radio receiver, advantages— FM receiver— difference between FM and AM receivers.				
UNIT-II	FIBER OPTIC COMMUNICATION: introduction — basic principle of fiber optics — advantages — construction of optical fiber — classification based on the refractive index profile — classification based on the number of modes of propagation — losses in optical fibers — attenuation—advantages of fiber optic communication				
UNIT-III	RADAR COMMUNICATION: introduction - basic radar system -radar range - antenna scanning -pulsed radar system - search radar -tracking radar - moving target indicator Doppler effect-MTI principle - CW Doppler radar				
UNIT-IV	SATELLITE COMMUNICATION: introduction history of satellites – satellite communication system – satellite orbits – basic components of satellite communication system – commonly used frequency in satellite – communication –multiple access communication – satellite communication in India				
UNIT-V	MOBILE COMMUNI basic cellular mobile important features of	CATION: introduction – coradio system – cell phone fax machine – application rture terminals) modem IPT	facsimile –of facsimile –		
TEXT BOOKS	 V.K. Metha, Principles of Electronics, S. Chand & Co Ltd., 2013 Anokh Singh and Chopra A.K., Principles of communication Engineering, S. Chand & Co, 2013 				
REFERENCE BOOKS	publications	Communications, 2020, Unionical Fiber Communications: Poon Education.			

	2. ENERGY PHYSICS				
Credits	3	Ins Hours	3		
	e: To get the understanding of	of the conventional and r	non-conventional energy		
	rvation and storage systems.				
UNITS		COURSE DETAILS			
UNIT-I	as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.				
UNIT-II	solar radiation at the Ea Solar radiation measurer storage and storage syste heater – solar greenhouse	arth's surface – solar ments – solar radiatio ms – solar pond – sola	radiation geometry – on data –solar energy ar cooker – solar water		
UNIT-III	WIND ENERGY: introduction –nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy				
UNIT-IV	BIOMASS ENERGY: introduction – classification – biomass conversion technologies –photosynthesis – fermentation - biogas generation –classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages & disadvantages.				
UNIT-V	ENERGY STORAGE: importance of energy storage- batteries - lead acid battery -nickel-cadmium battery - fuel cells - types of fuel cells - advantages and disadvantages of fuel cells - applications of fuel cells - hydrogen storage.				
TEXT BOOKS	 G.D. Rai, Non-Con Publishers, 2009, 4thE S P Sukhstme, J K Na Collection and Storag D P Kothari, K P Si 2011, 2ndEdn. 	dn. Iyak, Solar Energy, Pri e, McGraw Hill, 2008,	inciples of Thermal, 3 rd Edn.		
REFERENCE BOOKS	 John Twidell & Tony Taylor& Francis, 200 S.A. Abbasi and Naso their environmental in M. P. Agarwal, Solar Delhi,1982 H. C. Jain, Non-Co Publishers, 1986. 	5, 2 nd Edn. emaAbbasi, Renewabl npact, PHI Learning P Energy, S. Chand &	le Energy sources and vt. Ltd, 2008.		

	3. MATHEMATICAL P	HYSICS			
Credits	3	Ins Hours	3		
	ve: To understand higher m	athematical concepts whi	ch are applied to solve		
<u> </u>	s and similar situations	COUNCE DETAIL C			
UNITS		COURSE DETAILS			
UNIT-I	MATRICES: types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley - Hamilton theorem – inverse of matrix by Cayley - Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.				
UNIT-II	VECTOR CALCULUS: vector differentiation – directional derivatives –definitions & Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.				
	ORTHOGONAL CURY	VILINEAR COORDIN	NATES: tangent basis		
UNIT-III	vectors – scale factors – coordinate systems –gra vector – Laplacian in thes	dient of a scalar -dive	•		
UNIT-IV	FOURIER SERIES: periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS: Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier transform of single pulse – trigonometric, exponential and Gaussian functions – inverse Fourier transform – convolution theorem.				
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.				
TEXT BOOKS	 Advanced Engineerin India. Mathematical Physic International Publishe Mathematical Physics Mathematical Physics 	cs – P. K. Chattoj rs. – B. D. Gupta.	padhyay, New Age		
REFERENCE BOOKS	 Fourier Analysis by M Engineering Mathema Applied Mathematics 	I.R. Spiegel, 2004, Tata tics III- B, M. K. Venka for Scientists and Engir nd Ed, WILEY-VCH Ve	McGraw-Hill. Ataraman, Aneers, Bruce R. Kusse Arlag, 2006.		

	4.ADVANCED MA	THEMATICAL PHYSICS			
Credits	3	Ins Hours 3			
		attrices and vector calculus learnt in earlier course of theorems. The special functions and applications			
	al equations will be of use in				
UNITS		COURSE DETAILS			
UNIT-I	MATRICES: introduction – special types of matrices – transpose – conjugate – conjugate transpose – symmetric & anti symmetric – Hermitian and skew Hermitian – orthogonal and unitary – properties – characteristic equation – roots and characteristic vectors – diagonalization – Cayley – Hamilton theorem – simple problems				
UNIT-II	VECTOR CALCULUS: Voperator – divergence – second derivative of vector functions or fields –Laplacian operator – curl of a vector – line integral – line Integral of a vector field around an infinitesimal rectangle – curl of conservative field – surface integral – volume integral (without problem) – Gauss's divergence theorem and proof – Stroke's theorem and proof –simple problems.				
UNIT-III	SPECIAL FUNCTIONS: definition —Beta function — Gamma function — evaluation of Beta function — other forms of Beta function — evaluation of Gamma function — other forms of Gamma function — relation between Beta and Gamma functions — simple problems.				
UNIT-IV	FROBENIUS METHOD AND SPECIAL FUNCTIONS: singular points of second order linear differential equations and importance – singularities of Bessels and Laguerre equations, Frobenius method and applications to differential equations: Legendre and Hermite differential equations – Legendre and Hermite polynomials – Rodrigues formula –generating function – orthogonality				
UNIT-V	PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial differential equations using separation of variables - Laplace's equation in problems of rectangular – cylindrical and spherical symmetry – conducting and dielectric sphere in an external uniform electric field – wave equation and its solution for vibrational modes of a stretched string				
TEXT BOOKS	 Mathematical Physics Edition (2006) Mathematical Physics 	. ,			
REFERENCE BOOKS	 Mathematical Physics, SatyaPrakash (Sultan Chand) Mathematical Methods or Physicists, G.B.Arfken, H.J.Weber, F.E.Harris (2013, 7th Edn., Elsevier) Mathematical Physics–H. K. Dass, Dr. Rama Verma (S. Chand Publishing) Advanced Engineering Mathematics, Erwin Kreyszig (Wiley India) Mathematical Physics and Special Relativity, M. Das, P.K. Jena and B.K. Dash (Sri Krishna Prakashan) 				

5. PRINCIPLES	S OF PROGRAMMING	CONCEPTS AND C P	ROGRAMMING			
Credits	3	Ins Hours	3			
 Learning Objective: The main objectives of this course are to: Develop logics which will aid in developing programs and applications Solve problems using functional and object – oriented paradigm Use ideas from various paradigms when programming in a language of different paradigm. 						
UNITS	UNITS COURSE DETAILS					
UNIT-I	Constants, Variables and Data types: Introduction – character sets – constants – keywords – identifiers – variables – data types – Declaration of variables – assigning values to variables –defining symbolic constants					
UNIT-II	Operators and Expressions: Arithmetic operators – relational operators – logical operators – assignment operators – increment and decrement operators – conditional operators – special operators – arithmetic expression – evaluation of expressions –Precedence of arithmetic operators –type conversion in expression – Operator precedence and associativity – mathematical functions.					
UNIT-III	Input and Output Operations: Reading and writing character – formatted input and output – decision making: IF statement: Simple IF, IF ELSE, Nesting of IFELSE and ELSE IF Ladder – Switch Statement –?: operator – go to statement – while, do – while statement – For loop					
UNIT-IV	Arrays: Introduction – One dimensional array – declaration of array – Initiating on two and multi dimensional arrays – declaring and initializing string variables – reading strings from terminal–writing strings on the screen.					
UNIT-V	User Defined Functions: Need for user defined functions – A multifunction program – The form of C Functions – RETURN values and their Types – Calling a function – Call by Value –Call by Reference - Recursive functions					
TEXT BOOKS	 Programming in ANSI C, E. Balagurusamy, TMH (2008) The C Programming Language, Brian Kernighan, Dennis Ritchie, Prentice Hall (1978) 					
REFERENCE BOOKS	 Programming in C by Ashok N. Kamthane First Indian Print, Pearson (2004). Computing Fundamentals and C Programming, E. Balagurusamy, TMH (2011) 					
Web links	1. https://www.programiz 2. https://www.geeksforg 3. https://beginnersbook.c examples/	eeks.org/c-language-set-				

	6. MATERIALS SCI	ENCE		
Credits	3	Ins Hours 3		
testing of materia		ons in crystals, deformation of materials and ehavior of a material, under the action of light tions of crystal defects.		
UNITS		COURSE DETAILS		
UNIT-I	vacancies(<i>problems</i>), in equilibrium concentrate application of point defendence defects: grain boundaries stacking faults – volume	ECTIONS: introduction — point defects: nterstitials, impurities, electronic defects — tion of point imperfections (problems)—ects—line defects: edge dislocation(problems), urface defects: extrinsic defects — intrinsic es, tilt &twist boundaries, twin boundaries, e defects—effect of imperfections.		
UNIT-II	materials – atomic mode in design – rubber like relaxation process – viso	MATION: introduction — elastic behavior of el of elastic behavior —modulus as a parameter elasticity — inelastic behavior of materials — co elastic behavior of materials — spring-Dash tic behavior of materials.		
UNIT-III	tensile stress-strain cur mechanism of creep -	TERIALS: introduction —plastic deformation: rve — plastic deformation by slip — creep: — creep resistant materials — strengthening ening, grain refinement — solid solution		
UNIT-IV	OPTICAL MATERIALS: introduction – optical absorption in metals, semiconductors and insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence – light emitting diodes –liquid crystal displays.			
UNIT-V	compression test, hard radiographic methods, u	STING: destructive testing: tensile test, lness test – nondestructive testing (NDT): altrasonic methods – thermal methods of NDT: ent used for NDT: metallurgical microscope		
TEXT BOOKS		dition, 2015 Rajendran, McGraw Hill publications2011		
REFERENCE BOOKS	Introduction, 8th Edit 2. W. Bolton, "Engineer worth & Heinemann, 3. Donald R. Askelan Engineering of Mate Indian Reprint, 2007. 4. William F. Smith,	nd, Pradeep P. Phule, "The Science and erials", 5th Edition, Thomson Learning, First		

7.]	LASE	CRS AND FIE	ER OPT	ICS			
Credits		3			s Hours	3	
						types of lasers, laser	r
unitrumentation at UNITS	nd their applications also to inter connect between optics with lasers.						
UNIIS	COURSE DETAILS FUNDAMENTALS OF LASER: basic principles: spontaneous and						1
UNIT-I	stimulated emission – Einstein's coefficient – pumping mechanism: optical, electrical and laser pumping – population inversion – two and three level laser system – resonator configuration – quality factor – threshold condition – concept of Q switching–Theory of mode locking–cavity dumping.					n: ıd –	
UNIT-II	Glas semi	TYPES OF LASER: solid state laser: ruby laser, Nd: YAG laser, Nd: Glass laser—semiconductor laser: intrinsic semiconductor laser, doped semiconductorlaser, injection laser—dye laser—chemical laser: HCL laser, DF- CO ₂ , CO chemical laser. Gas laser: neutral atom gas laser (He-Ne laser), CO ₂ laser, Copper vapour laser.					
UNIT-III	APPLICATIONS OF LASER: application of laser in metrology – optical communication – material processing: laser instrumentation of material processing, powder feeder, laser heating, laser welding, laser melting – medical application – Laser instrumentation for surgeries – laser in astronomy						
UNIT-IV	FIBER OPTICS: basic components of optical fiber communication – principles of light propagation through fiber – total internal reflection – optical fiber – coherent bundle – numerical aperture and skew mode – phase shift and attenuation during total internal reflection – types of fiber: single mode and multi-mode fiber – step index and graded index fiber – fiber optic sensors – application of fiber optics.						
UNIT-V	CHARACTERISTICS AND FABRICATION OF OPTICAL FIBER: fiber characteristics: mechanical and transmission characteristics – absorption loss and scattering loss measurements – dispersion – connectors and splicers – fiber termination – optical time domain reflectometer (OTDR) and its uses – fiber material – fiber fabrication – fiber optic cables design.					on – ne	
TEXT BOOKS	1. E F 2. A N 3. J	B.B. Laud - L Publications Than Introduction M.N.S, Chand Wilson and J	Laser and hird Edition to lase & Co,Nev.F.B. Haw	Non-linea on, New D r, theory a wDelhi vkes. 'Intro	r Optics, N elhi. and applicat	Tew Age International tions by Avadhunulu Opto Electronics',	
REFERENCE BOOKS	2. k 3. C	 J.Wilson and J.F.B. Hawkes. 'Introduction to Opto Electronics', Pearson Education, 2018. A.Sennaroglu, "Photonics and Laser Engineering: Principles, Devices and Applications McGraw-HillEducation, 2010. K.R.Nambiar, "Lasers: Principles, Types and Applications", New Age International, 2004. Optic, Ajoy Ghatak, McGraw-Hill Education (India)Pvt,Ltd, 6thEdn., 2017. 					

	8. DIGITAL PHOTO	GRAPHY				
Credits	3	Ins Hours	3			
		principles of photography a				
		erstand the essential comp				
UNITS	id digital cameras and al	so the different image proc COURSE DETAILS	cessing techniques.			
UNIIS	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE					
		iple –chemical route and o				
	_	- shadows – light intensity	0			
UNIT-I	_	ges –pin-hole images – pra				
		instead of pin-hole – foca				
	size – imaging of close		r rengur una mage			
		OLLING THE IMAGES	5: photographic lens –			
		e of view (problems) -				
UNIT-II		rs (problems) – depth of f	_			
		enses for digital cameras –				
	CAMERA USING	FILMS AND ITS TYP	PES: camera and its			
TINITE III	essential components-	- shutter – aperture – ligh	t measurement – film			
UNIT-III	housing – camera types: view camera– view finder camera – Reflex					
	camera– single lens reflex (SLR) camera					
	DIGITAL CAMERA	AS PRINCIPLE AND	FYPES: principle of			
	digital image capturing -comparison of digital and analog picture					
	information – megapixel – grain, noise and pixel density – optical and					
UNIT-IV	digital zooming – image stabilizer – bit depth – white balance – colour					
UNIT-IV	modes – file formats (TIFF, RAW & JPEG) – storage cards and types					
		nera phones – compact car	mera – hybrid camera			
	– digital SLR.	ACE DOCT DROD	HOTHON 1 1			
		AGE - POST PROD				
		pherals – software: savir				
		e image – undo/redo/hist - colour balance – hue/satu				
UNIT-V		- removing an element in				
		els – curves – selection	_			
		s: inkjet printer – laser pri				
	- lambda / light jet pri		aye suo printer			
		, Anna Fox & Richard	Sawdon Smith, Basic			
		ition, , 2010-NL, Focal pro				
TEXT BOOKS		d this if you want to take				
	people, Laurence K		gram photographs of			
		Photography in Available	e Light essential			
REFERENCE	skills, 2006, Focal		2.5 0550111141			
BOOKS		es, The Photographer's pr	ractical handbook			
DOOKS	2005, UK PRESS	es, The Thotographer's pi	ractical Handook,			
	2005, OK 1 KLSS					

9. NAN(SCIENCE .	AND NANO	TECHNOL	OGY		
Credits	3	3	Ins	Hours	3	
Learning Objective: This course aims to provide an overall unde science and Nanotechnology and introduces different types of nano materials, fabrication methods, characterization techniques and a range				materials, their		
_ * _ *	COURSE DETAILS					
UNITS	NANOCCI				V 7	
UNIT-I	NANOSCIENCE AND NANOTECHNOLOGY: nano scale— nature and nanostructures — nanostructures: 0D, 1D,2D— surface to volume ratio— size effect — excitons — quantum confinement— metal based nano particles (metal and metal oxide) — nano composites (non-polymer based) — carbon nanostructures — fullerene —SWCNT and MWCNT					
UNIT-II	behavior — toughness plasmon re properties — chemical pr	elastic propert –super plastic sonance – ele – magnetic p operties – prop	ies – hardno behavior ectrical prop roperties – perties of CN	ess and str – optical erties – di super para TS.	ength – ductility and properties – surface electric materials and amagnetism – Electro	
UNIT-III	top-down a chemical & discharge – – ball millin sol-gel meth	nd bottom-up physical vape sputtering – t ng – lithograp nods – synthes	p approache our deposition hermal evap hy: photolith is of CNT.	es – electrons (CVD oration – pagraphy –	ochemical method – & PVD) – plasma arc ulsed laser deposition e-beam lithography –	
UNIT-IV	CHARACTERIZATION TECHNIQUES: scanning probe microscopy – scanning tunneling microscopy – atomic force microscopy – scanning electron microscopy – transmission electron microscopy –powder XRD method: determination of structure and grain size analysis – UV-visible and photoluminescence spectroscopy.					
UNIT-V	-photodyna rechargeabl sensors bas sensors - n	mic therapy e batteries – si ed on optical nano bio sens	 molecular uper capacite and physicsors. Nano 	motors - ors- photoveal propertelectronics:	redicine: drug delivery -energy: fuel cells – voltaics. Sensors: nano ies – electrochemical CNTFET – display applications of CNTs	
TEXT BOOKS	Nanosci 2. M.A. SI Nanotec 3. Mick W	ence and Nandah, Tokeer Ahnology, Nardilson, et al (20	otechnology, hmad (2010 osa Publishir 005) Nanotec	PHI Learn), Principle ng House P hnology, C	s of Nanoscience and vt Ltd. Overseas Press.	
REFERENCE BOOKS	Publishi 2. J.H. Fer Preparat 3. B.S. Mu	ng Inc. USA Idler (2007) N Ion, Character	Vano particle rization and A	s and nand	o structured films; as, John Wiley & Sons ence and Nano	

	10 MEDICAL INSTRUMENTATION				
Credits	3 Ins Hours 3				
	ive: This course aims to provide background of the Physics principles				
	nentation technologies through theoretical & practical learning.				
UNITS	COURSE DETAILS				
UNIT-I	BIOMETRICS: introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers– force, motion, pressure transducers. AUDIOMETRY: mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids				
UNIT-II	BIOELECTRIC POTENTIALS AND ELECTRODES: biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.				
UNIT-III	DIAGNOSTIC RADIOLOGY: radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY: linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: radioisotopes – radio pharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.				
UNIT-IV	ULTRASOUND IMAGING: ultrasound transducer — ultrasound imaging—Doppler ultrasound—ultrasound image quality & bio-effects. MAGNETIC RESONANCE IMAGING: proton & external magnetic field—precession—radiofrequency and resonance—MRI signal—relaxation time—MRI instrumentation—imaging sequences—biosafety				
UNIT-V	PROJECT ASSIGNMENT: clinical practice of <i>one</i> of the following: electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound				
TEXT BOOKS	 Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) Biomedical Instrumentation & Measurements Prentice Hall of India, New Delhi. R. S. Khandpur (2003) Handbook of Biomedical Instrumentation 2ndEdn. Tata McGraw Hill, New Delhi. Kuppusamy Thayalan (2017), Basic Radiological Physics 2nd edn. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi. 				
REFERENCE BOOKS	 John Webster (2004) Bio-instrumentation John Wiley and Sons, Singapore. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction to Biomedical Engineering, 2nd ed. Elsevier, San Deigo William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation therapy Physics 3rd ed. Wiley-Liss, New Jersey 				

11.	AGRICULTURAL PHYSICS		
Credits	3 Ins Hours 3		
Learning Objective: The main objectives of this course are to:			
	1. Have knowledge of physical phenomena in agricultural environment.		
_	If thinking in the field of farming.		
	ctical knowledge of the student.		
UNITS	COURSE DETAILS		
	Soil Physics : Mechanical composition of soil– physical properties of soil, pore space, bulk density, particle density – classification –		
	significance of clays – plasticity, shrinkage, flocculation and de-		
UNIT-I	flocculation –Soil structure –soil colour – Thermal properties of soil		
UNII-I	and soil temperatures –types of soil water – its retention, movement –		
	viscosity, swelling – soil moisture losses – Elementary ideas of soil		
	water conservation.		
	Water Physics: Water qualities—Rainfall—Groundwater—surface water		
UNIT-II	pollution – instrumentation and sampling -Water quality monitoring		
	Electric Power: Principle of production of A.C. – Average value of		
	A.C. voltage or current – R.M.S. value of alternating voltage or		
	current –power consumed in A.C. Circuits–kilo watt hour–A.C.		
UNIT-III	generator – Three-phase A.C. – Distribution of three phase A.C. Three		
	 phase power system—The choke - The transformer—Transmission 		
	of electric power over long distances.		
	Hygrometry and Pumps: Absolute Humidity – Relative Humidity–		
	Dew point, Daniell's Hygrometer, Regnault's hygrometer. Advantages		
	of Regnault's hygrometer – wet and Dry and Bulb hygrometer. Water		
UNIT-IV	pumps – common pump – force pump – Fire engine, inflator (or)		
	compression pump – pressure after n strokes – Exhaust pump (or)		
	common air pump.		
	Solar Collector and Applications: Solar Air heaters Application of		
	solar air heaters. Solar Drying with various driers -Heating and		
UNIT-V	Drying of Agricultural products -Theory of solar drying moisture		
OTTI-V	content and its measurement –Solar ponds – Application of solar		
	ponds – Solar pumping –Solar pump system components – Turbine		
	driven pump – Application of solar energy to agricultural crops		
	1. The Nature and Properties of Soil, H.O.Buckman, Brady,		
TENT DOOM	Macmillan, (1967)		
TEXT BOOKS	2. Soil Physics, H.Kohnke, McGraw-Hill, (1968).		
	3. Systematic Hydrology, John C.Rodda, Richard A.Downing, Frank M.Law, Newnes - Butterworths, (1976).		
	1. Electricity and Magnetism, R.Murugesan, S.Chand,(2017).		
REFERENCE	2. Hydrostatics, A.S.Ramsey, CambridgeUniversityPress,(2017).		
BOOKS	3. SolarenergyUtilization, G.D.Rai, Khanna Publisers, (1987).		
	1. https://www.sciencedirect.com/topics/agricultural-and-biological-		
	sciences/soil-physics		
***	2. https://www.sciencedirect.com/science/article/pii/S1631071304002		
Web links	780		
	3. https://www.sciencedirect.com/topics/engineering/solar-energy-		
	<u>application</u>		

12.GEO PHYSICS			
Credits	3	Ins Hours	3
	tive: The main objectives of this course are to:		
1. Study the physical properties of earth and how it works.			
	features of earth using gravi		d seismic methods.
	ll physical parameters of the		
UNITS		COURSE DETAILS	
UNIT-I	Seismology: Introduction – Seismology – P waves, S waves, their velocities – Time distance curves and the Location of epicenters – Effect of boundaries – Major discontinuities and resulting phase of seismic waves - Derivation of properties from the velocities.		
UNIT-II	Surfacewaves : Rayleigh w waves. Seismometry : Hor Strain seismograph.	izontal seismograph and s	seismography equation—
UNIT-III	Earthquakes: Focus, magnitude, frequency – Detection and prediction. Gravity: The potential (Laplace's equation and Poisson's equation)- Absolute and relative measurements of gravity - Hammond Faller method - Worden gravimeter		
UNIT-IV	Geomagnetism: Fundamental equations - Measurements: method of Gauss, saturation induction magnetometers, proton precession magnetometers, alkali vapour magnetometers - Theories of earth's magnetism - Causes of the main field - Dynamo theories. Internal structure of the earth: The core variation of mechanical properties with depth - Materials and equation of state of the interior of the earth.		
UNIT-V	Geochronology: Radioactivity of the earth – Radioactive dating of rock sand minerals Geological time scale – The age of the earth. Geo thermal physics: Flow of heat to the surface of the earth - Sources of heat within the earth - Process of heat transport –Internal temperature of the earth.		
TEXT BOOKS	Philadelphia, W.B.Sau 2. Physics of the Earth ar	nd Planets, A.H.Cook, Mcl	Millan,(1973).
REFERENCE BOOKS	Cambridge University 2. Exploration Geophysi Science & Business M	cs, Mamdouh R. Gadalla (edia, (2008).	ah, RayFisher, Springer
Web links		ent/storage2/courses/10510 om/playlist?list=PLfk0Dfh	

NON MAJOR ELECTIVES (NME)

PHYSICS FOR EVERYDAY LIFE			
Credits	2 Ins Hours 2		2
Learning Objective: To know where all physics principles have been put to use in daily			
1 **	the concepts with a better	<u>C</u>	now about Indian
scientists who have	made significant contribu		
UNITS	(COURSE DETAILS	
UNIT-I	MECHANICAL OBJE	CTS: spring scales – l	oouncing balls -roller
UNII-I	coasters – bicycles –rock	ets and space travel.	
	OPTICAL INSTRUME	NTS AND LASER: vis	sion corrective lenses
UNIT-II	 polaroid glasses – UV p 	rotective glass - polaro	id camera – colour
	photography – holography	y and laser.	
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier –		
UNIT-III	television – air conditione	ers – microwave ovens –	- vacuum cleaners
	SOLAR ENERGY: Sola	r constant – General ap	plications of solar
UNIT-IV	energy – Solar water heat	ers – Solar Photo – volt	aic cells – General
	applications of solar cells.	,	
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS:		
UNIT-V	C.V. Raman, Homi Jehan	•	
	Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam		
and their contribution to science and technology.			
	1. The Physics in our Dai	ily Lives, Umme Amma	ıra, Gugucool
TEXT BOOKS	Publishing, Hyderabac	l, 2019.	
	2. For the love of physics	s, Walter Lawin, Free Pr	ress, New York, 2011.

ASTROPHYSICS			
Credits	2	Ins Hours	2
Learning Object	tive: This course intend	ls to introduce princi	ples of astrophysics
	ence of formation and evo		*
heavenly phenom	ena and provide an under	rstanding of the physic	cal nature of celestial
bodies along with	the instrumentation and ted	chniques used in astrono	omical research
UNITS	(COURSE DETAILS	
UNIT-I	TELESCOPES: Optical telescopes – magnifying power, brightness, resolving power and f/a ratio – types of reflecting and refracting telescopes – detectors and image processing – radio telescopes – Hubble space telescope.		
UNIT-II	SOLAR SYSTEM: Bode's law of planetary distances – meteors, meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of gravitational waves – recent advances in astrophysics.		
UNIT-III ECLIPSES: types of eclipses – solar eclipse – total and partial solar eclipse – lunar eclipse – total and partial lunar eclipse – transits. THE SUN: physical and orbital data – solar atmosphere – photosphere – chromosphere – solar corona – prominences – sunspots – 11 year solar cycle – solar flares.			

UNIT-IV STELLAR EVOLUTION: H-R diagram – birth & death of low intermediate mass and massive stars – Chandrasekar limit – dwarfs – neutron stars – pulsars – black holes – supernovae. GALAXIES: classification of galaxies – galaxy clusters –inter of galaxies, dark matter and super clusters – evolving universe.			
	ACTIVITIES IN ASTROPHYSICS:		
	(i) Basic construction of telescope		
	(ii) Develop models to demonstrate eclipses/planetary motion		
UNIT-V	(iii) Night sky observation		
	(iv) Conduct case study pertaining to any topic in this paper		
	(v) Visit to any one of the National Observatories		
	Any three activities to be done compulsorily.		
	1. Baidyanath Basu, (2001). An introduction to Astrophysics,		
	Secondprinting, Prentice – Hall of India (P) Ltd, New Delhi		
TEVT DOOLS	2. K.S. Krishnaswamy, (2002), Astrophysics – a modern		
TEXT BOOKS	perspective, New Age International (P) Ltd, New Delhi.		
	3. Shylaja, B.S. & Madhusudan, H.R., (1999), Eclipse: A		
	CelestialShadow Play, Orient Black Swan,		

PHYSICS OF MEDICAL INSTRUMENTS			
Credits	2 Ins Hours 2		
Learning Objective: The students will be exposed to instruments like ECG,EEG,EMG,			
	diagnostic specialties, opera	tion theater and its sa	fety which will kindle
interest to special	ize in instrument servicing.		
UNITS	C	OURSE DETAILS	
	BIO-POTENTIALS AND		
	cell membrane- resting and		
UNIT-I	potential – bio-electric po		
	components of bio-medica		
	potential – metal microelec		edle electrodes – types
	of surface electrode – the p		
	Bio-potential based Insti		
	origin of cardiac action p		_
UNIT-II			p (qualitative) –
	Electroencephalography (E		
	potentials - brain waves -	•	
	electromyography (EMG) -		
	OPERATION THEATRE AND SAFETY: diathermy – bloc		
	diagram of the electrosu		
UNIT-III	ultrasonic diathermy – v		
	RADIATION SAFETY:		
	pocket type radiation alarm		
	MEDICAL IMAGING:		
	tomography (CT) - pri		
UNIT-IV	construction –block diagra		
	systems – construction of t	ransducer – display n	nodes – MRI principle
	and instrumentation.		

	DIAGNOSTICS AND SPECIALITIES: X-rays in radiography –
UNIT-V	fluoroscopy - comparison- image intensifiers - angiography -
	applications of X-ray examination (problems).
OTTI-V	LASER IN MEDICINE: laser interactions with bio molecules –
	advantages of laser surgery – endoscopy – types of endoscopes with
	their operation (qualitative).
	1. Biomedical Instrumentation and measurement, Leslie Cromwell,
	PHI, 2015
	2. Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992
	3. Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987
TEXT BOOKS	4. Medical Physics, John R. Cameron and James G. Skofronick,
	Thrift books, Atlanta, 1985
	5. Electronic Instruments and Instrumentation Technology, M. M.M.
	Anand, PHI, 2015

HOME ELECTRICAL INSTALLATION			
Credits	1	Ins Hours	2
Learning Objective: The students will get knowledge on electrical instruments			
installations and domestic wiring techniques with safety precautions and servicing.			
UNITS		COURSE DETAILS	
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature		
UNIT-II	TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristics of single and multicore wires		
UNIT-III	ELECTRICAL WIRING: different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs		
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy – power rating of electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating – useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit		
UNIT-V	SAFETY MEASURES: insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers – types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth line – lighting arrestors – short circuiting and over loading – electrical safety – tips to avoid electrical shock – first aid for electrical shock – fire safety for electric current		

TEXT BOOKS 1. Wiring a House: 5th Edition by Rex Cauldwell, (2014). 2. Black & Decker Advanced Home Wiring, 5th Edition: Back Power - Panel Upgrades - AFCI Protection - "Smart" Thereby Editors of Cool Springs Press, (2018). 3. Complete Beginners Guide to Rough in Electrical Wiring: Ryan (2022).	nostats,
--	----------

PHYSICS OF MUSIC			
Credits	2	Ins Hours	2
Learning Object	ive: To apprise and train	students on the role of Ph	ysics in music and get
•	the musical notes and in	struments.	
UNITS	COURSE DETAILS		
	SCIENTIFIC STUDY	Y OF MUSIC: vibrations	s of atoms of matter-
	vibrations coupling to	air - propagation of sour	nd waves in air, other
UNIT-I		- velocity, frequency, wa	
UNII-I	intensity: definition an	d unit fs - classification of	of sound on frequency
	and velocity- human	& animal sound perception	on– mechanism of ear
	and hearing – psychoac	coustics	
		G SYSTEMS: simple	
	tuning fork- amplitud	le, phase, energy, energ	gy loss / damping /
UNIT-II		travelling waves and star	
		strings- one-dimensional	-
	closed organ pipes – c	ver tones, harmonics – qu	uality of sound: pitch,
	timber, loudness – octa		
	MUSICAL TONE: 1	pure/simple tones – sine	/cosine waves- well-
		avelengths, amplitudes & 1	
UNIT-III		s- mix of different frequence	_
		position of simple tones -	
	periodic complex wave	form – formants – resonar	nces– sound envelope
		IUSICAL SOUNDS: hui	· ·
		ion – larynx (sound box) -	
		guitar, mandolin, violin,	
UNIT-IV		flute, saxophone, pipe org	
	_	nents: plates, membrane	-
		ctronic instruments: keyb	
		analog and digital soun	d synthesizers,–MIDI
	instrument– computer g		
		MUSIC & SOUND: E	
		ls – magnetic wire and ta	
******		, DVD, etc.)– analog tr	
UNIT-V		loudspeaker – complex s	
		- spectral analysis techni	
		orms, digital signal proces	sing – digital filtering
	- specifications of reco		2 11 11
	-	The Science of Musical S	Sound by Harvey
TEXT BOOKS	White (2014)		D 1 (2000)
		The Physics of Music by E	•
	_	ical Instruments by Curt S	, ,
	-	ic: Essential Connection	_
	Excursions by Kink	o Tsuji and Stefan C. Mül	ier (2021)

COURSE	ALLIED PAPER		
COURSETITLE	ALLIED PHYSICS – I		
CREDITS	3	Lecture hours	3 hours
COURSE OBJECTIVES	To impart basic principles of Physics that which would be helpful for students who have taken programmes other than Physics.		

UNITS	COURSE DETAILS
	WAVES, OSCILLATIONS AND ULTRASONICS: simple
	harmonic motion (SHM) – composition of two SHMs at right angles
	(periods in the ratio 1:1) – Lissajous figures – uses – laws of
	transverse vibrations of strings – determination of AC frequency
UNIT-I	using sonometer (steel and brass wires) – ultrasound – production –
	piezoelectric method – application of ultrasonics: medical field –
	lithotripsy, ultra sonography – ultra sonoimaging- ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of
	noninvasive surgery – ultrasonics in green chemistry.
	PROPERTIES OF MATTER: Elasticity: elastic constants – bending
	of beam – theory of non- uniform bending – determination of Young's
	modulus by non-uniform bending – energy stored in a stretched wire –
	torsion of a wire – determination of rigidity modulus by torsional
	pendulum
UNIT-II	Viscosity: streamline and turbulent motion – critical velocity –
	coefficient of viscosity - Poiseuille's formula - comparison of
	viscosities – burette method,
	Surface tension: definition – molecular theory – droplets formation–
	shape, size and lifetime – COVID transmission through droplets, saliva
	 drop weight method – interfacial surface tension. HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-
	Thomson porous plug experiment – theory – temperature of inversion
	- liquefaction of Oxygen- Linde's process of liquefaction of air- liquid
	Oxygen for medical purpose— importance of cryocoolers —
UNIT-III	thermodynamic system – thermodynamic equilibrium – laws of
	thermodynamics – heat engine – Carnot's cycle – efficiency – entropy
	 change of entropy in reversible and irreversible process.
	ELECTRICITY AND MAGNETISM: potentiometer – principle –
	measurement of thermo emf using potentiometer –magnetic field due
	to a current carrying conductor – Biot-Savart's law – field along the
UNIT-IV	axis of the coil carrying current – peak, average and RMS values of ac
	current and voltage – power factor and current values in an AC circuit
	 types of switches in household and factories Smart wifi switchesfuses and circuit breakers in houses
	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates,
	OR, AND, NOT, NAND, NOR, EXOR logic gates – universal
TINITE N	building blocks – Boolean algebra – De Morgan's theorem –
UNIT-V	verification – overview of Government initiatives: software
	technological parks under Meit Y, NIELIT- semiconductor
	laboratories under Dept. of Space – an introduction to Digital India

	1. R. Murugesan (2001), Allied Physics, S. Chand & Co, NewDelh
	2. Brijlal and N.Subramanyam (1994), waves and Oscillations,
	Vikas Publishing House, NewDelhi.
	Brijlal and N. Subramaniam (1994), properties of Matter, S.
	Chand & Co., NewDelhi.
TEXT BOOKS	4. J.B. Rajam and C.L.Arora (1976). Heat and Thermodynamics
	(8 th edition), S. Chand & Co., New Delhi.
	5. R. Murugesan (2005), Optics and Spectroscopy, S. Chand & Co,
	NewDelhi.
	6. A.Subramaniyam, Applied Electronics 2 nd Edn., National
	Publishing Co., Chennai.
	1. Resnick Halliday and Walker (2018). Fundamentals of Physics
	(11 th e dition), John Willey and Sons, Asia Pvt.Ltd., Singapore. 2. V.R. Khanna and R.S.Bedi (1998), Text book of Sound 1 st
	Edn. Kedhar naath Publish & Co, Meerut.
REFERENCE	3. N.S.Khare and S.S. Srivastava (1983), Electricity and Magnetism
BOOKS	10 th Edn., Atma Ram & Sons, New Delhi.
DOOKS	4. D.R.Khanna and H.R. Gulati (1979). Optics, S.chand& Co.Ltd.,
	New Delhi.
	5. V.K. Metha (2004). Principles of electronics 6 th Edn. S. Chand
	and company.
	1. https://youtu.be/M 5KYncYNyc
	2. https://youtu.be/ljJLJgIvaHY
	3. https://youtu.be/7mGqd9HQ_AU
	4. https://youtu.be/h5jOAw57OXM
	5. https://learningtechnologyofficial.com/category/fluid-
WEBLINKS	mechanics-lab/
WEDLINKS	6. <u>http://hyperphysics.phy-</u>
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watc
	h?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v=9mX
	OMzUruMQ&t=1shttps://www.youtube.com/watch?v=m4u-
	SuaSu1s&t=3shttps://www.biolinscientific.com/blog/what-are-
	surfactants-and-how-do-they-work

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.
	CO2	Explaintheirknowledgeofunderstandingaboutmaterialsandtheir behaviorsandapplyittovarioussituationsinlaboratoryandreal life.

	Connect droplet theory with Corona transmission.							
CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of Flow temperature physics in the back ground of growth of this technology.							
CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlate the connection between electric field and magnetic field and analyze them mathematically verify circuits and apply the concepts To construct circuits and study them.							
CO5	Interpret the real life solutions using AND, OR, NOTbasic logic gates and intend their ideas to universal building blocks. Infer operations using Boolean algebra and acquire elementary ideas of IC circuits. Acquire information about various Govt. programs/ institutions in this field.							

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	ODD SEMESTER - CORE								
COURSETITLE	ALLIED PRACTICALS – I								
CREDITS	3 Practical hours 3 hours								
COURSE OBJECTIVES									
Minimum 8 Experiments									

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 5. Surface tension and interfacial Surface tension drop weight method
- 6. Comparison of viscosities of two liquids burette method
- 7. Specific heat capacity of a liquid half time correction

- 8. Verification of laws of transverse vibrations using sonometer
- 9. Calibration of low range voltmeter using potentiometer
- 10. Determination of thermo emf using potentiometer
- 11. Verification of truth tables of basic logic gates using ICs
- 12. Verification of De Morgan's theorems using logic gate ICs.
- 13. Use of NAND as universal building block.

Note : Use of digital balance permitted

COURSE	ALLIED PAPER								
COURSETITLE	ALLIED PHYSICS -II								
CREDITS	3	3 Lecture Hours 3 hours							
COURSE OBJECTIVES		ic concepts of optics, mand quantum physics, so							

UNITS	COURSE DETAILS
UNIT-I	OPTICS: interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries
UNIT-II	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS: nuclear models — liquid drop model — magic numbers — shell model — nuclear energy — mass defect — binding energy — radioactivity — uses — half life — mean life - radio isotopes and uses —controlled and uncontrolled chain reaction — nuclear fission — energy released in fission — chain reaction — critical reaction — critical size— atom bomb — nuclear reactor — breeder reactor — importance of commissioning PFBR in our country — heavy water disposal, safety of reactors: seismic and floods —introduction to DAE, IAEA — nuclear fusion — thermonuclear reactions — differences between fission and fusion.
UNIT-IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES: frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence –introduction

	on gravitational waves, LIGO, ICTS opportunities at International
	Centre for Theoretical Sciences
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations
TEXT BOOKS	 R. Murugesan (2005), Allied Physics, S. Chand & Co, NewDelhi. K.Thangaraj and D.Jayaraman (2004), Allied Physics, Popular Book Depot, Chennai. Brijlal and N.Subramanyam (2002), Text book of Optics, S. Chand & Co, NewDelhi. R.Murugesan (2005), Modern Physics, S. Chand & Co, NewDelhi. A. Subramaniyam Applied Electronics, 2ndEdn., National Publishing Co., Chennai.
REFERENCE BOOKS	 Resnick Halliday and Walker (2018), Fundamentals of Physics, 11thEdn., John Willey and Sons, Asia Pvt. Ltd., Singapore. D.R.Khanna and H.R.Gulati (1979). Optics, S. Chand & Co. Ltd., New Delhi. A. Beiser (1997), concepts of Modern Physics, Tata Mc Graw Hill Publication, NewDelhi. Thomas L. Floyd (2017), Digital Fundamentals, 11thEdn., Universal Book Stall, NewDelhi. V.K. Metha (2004), Principles of electronics, 6th Edn. S. Chand and Company, New Delhi.
WEBLINKS	 https://www.berkshire.com/learning-center/delta-p-facemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/watch?time_continue=318&v=D38BjgUdL5U&feature=emb_logo https://www.youtube.com/watch?v=JrRrp5F-Qu4 https://www.youtube.com/blog/leak-test-using-pressure-transducers/ https://www.atoptics.co.uk/atoptics/blsky.htm - https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain the concepts of interference diffraction using principles of super position of waves and rephrase the concept of polarization based on wave patterns
COURSEO UTCOMES	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving theoretical models based on observation. Appreciate interdisciplinary nature of science and in solar energy related applications.

CO	Summarize the properties of nuclei, nuclear force structure of atomic nucleus and nuclear models. Solve problems on delay rate half-life and mean-life. Interpretnuclear processes like fission and fusion. Understand theimportance of nuclear energy, safety measures carried and get our Govt. agencies like DAE guiding the country in the nuclearfield.
CO	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.
COS	Summarize the working of semiconductor devices like junction

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** in the 3- point scale of STRONG **(S)**, MEDIUM **(M)** and LOW **(L)**.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER - CORE
COURSETITLE	ALLIED PRACTICALS – II
CREDITS	3
COURSE OBJECTIVES	Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results
Minimum TEN Experiments	
1. Radius of curvature of lens by forming Newton's rings	
2. Thickness of a wire using air wedge	
2 W146	

- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Determination of AC frequency using sonometer
- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zener diode
- 12. Construction of Zerner/IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor
- 14. NOR gate as a universal building block

Note: Use of digital balance permitted